Skip to content

Commit

Permalink
Another definition of limit
Browse files Browse the repository at this point in the history
  • Loading branch information
cesarbm03 committed Oct 3, 2023
1 parent d960f26 commit 053b314
Showing 1 changed file with 49 additions and 41 deletions.
90 changes: 49 additions & 41 deletions src/simplicial-hott/13-limits.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,77 +21,85 @@ over `#!rzk f`.
:= Σ (b : B), hom (A → B) (constant A B b) f
```

Given a function `#!rzk f : A → B` and `#!rzk b:B` we define the type of cocones
under `#!rzk f`.

```rzk
#def cocone
( A B : U )
( f : A → B )
: U
:= Σ (b : B), hom ( A → B) f (constant A B b)
```
We define a colimit for `#!rzk f : A → B` as an initial cocone under `#!rzk f`.

```rzk
#def colimit
( A B : U )
( f : A → B )
: U
:= Σ ( x : cocone A B f ) , is-initial (cocone A B f) x
```

We define a limit of `#!rzk f : A → B` as a terminal cone over `#!rzk f`.

```rzk
#def limit
( A B : U )
( f : A → B )
: U
:= Σ ( x : cone A B f ) , is-final (cone A B f) x
```
We give a second definition, we eventually want to prove that they coincide.
Define cone as a family.
```rzk
#def cone2
(A B : U)
: (A → B) → (B) → U
:= \ f → \ b → (hom (A → B) (constant A B b) f)
```
```rzk
#def constant-nat-trans-components
#def constant-nat-trans
(A B : U)
( x y : B )
( k : hom B x y)
: hom (A → B) (constant A B x) (constant A B y)
:= \ t a → ( constant A ( hom B x y ) k ) a t
```



```rzk
#def cone-precomposition
( A B : U)
( is-segal-B : is-segal B)
( f : A → B )
( b x : B )
: (cone2 A B f x) → (hom B b x) → (cone2 A B f b)
:= \ α k → vertical-comp-nat-trans
( k : hom B b x)
: (cone2 A B f x) → (cone2 A B f b)
:= \ α → vertical-comp-nat-trans
( A)
( \ a → B )
( \ a → is-segal-B )
( \ a → B)
( \ a → is-segal-B)
( constant A B b)
( constant A B x)
( \ a → \ t → constant-nat-trans A B b x k a t)
(f)
( constant-nat-trans A B b x k )
( α)
```

Given a function `#!rzk f : A → B` and `#!rzk b:B` we define the type of cocones
under `#!rzk f`.

```rzk
#def cocone
( A B : U )
( f : A → B )
: U
:= Σ (b : B), hom ( A → B) f (constant A B b)
```

```rzk
#def cocone2
(A B : U)
: (f : A → B) → (b : B) → U
:= \ f → \ b → (hom ( A → B) f (constant A B b))
```

We define a colimit for `#!rzk f : A → B` as an initial cocone under `#!rzk f`.
Another definition of limit.

```rzk
#def colimit
( A B : U )
( f : A → B )
#def limit2
( A B : U)
( is-segal-B : is-segal B)
( f : A → B)
( is-segal-B : is-segal B)
: U
:= Σ ( x : cocone A B f ) , is-initial (cocone A B f) x
:= Σ (b : B),
Σ ( c : cone2 A B f b ),
( x : B) → ( k : hom B b x)
→ is-equiv (cone2 A B f x) (cone2 A B f b) (cone-precomposition A B is-segal-B f b x k )
```

We define a limit of `#!rzk f : A → B` as a terminal cone over `#!rzk f`.

```rzk
#def limit
( A B : U )
( f : A → B )
: U
:= Σ ( x : cone A B f ) , is-final (cone A B f) x
```

## Uniqueness of initial and final objects.

Expand Down

0 comments on commit 053b314

Please sign in to comment.