Skip to content

Commit

Permalink
Merge pull request #120 from TashiWalde/right-orthogonal-calculus
Browse files Browse the repository at this point in the history
Fibers of right orthogonal maps have unique extensions
  • Loading branch information
jonweinb authored Oct 14, 2023
2 parents 29bb6f5 + fbaac82 commit 1b4c4f5
Show file tree
Hide file tree
Showing 3 changed files with 250 additions and 94 deletions.
33 changes: 21 additions & 12 deletions src/hott/11-homotopy-pullbacks.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -590,26 +590,35 @@ product of all fibers.

### Fiber product with singleton type

The relative product of `β : B → A` with a map `Unit → A` corresponding to
`a : A` is nothing but the fiber `fib B A β a`.
The relative product of `f : B → A` with a map `Unit → A` corresponding to
`a : A` is nothing but the fiber `fib B A f a`.

```rzk
#def compute-relative-product-singleton
( A B : U)
( β : B → A)
#def compute-pullback-to-Unit
( B A : U)
( f : B → A)
( a : A)
: Equiv (fib B A f a) (relative-product A B f Unit (\ unit → a))
:=
( ( \ (b , p) → ((b , unit) , p))
, ( ( ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl))
, ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl)))))
#def compute-map-pullback-to-Unit
( B A : U)
( f : B → A)
( a : A)
: Equiv-of-maps
( fib B A β a) (Unit) (\ _ → unit)
( relative-product A B β Unit (\ unit → a))
( Unit) ( second-relative-product A B β Unit (\ unit → a))
( fib B A f a) (Unit) (\ _ → unit)
( relative-product A B f Unit (\ unit → a))
( Unit) ( second-relative-product A B f Unit (\ unit → a))
:=
( ( ( ( \ (b , p) → ((b , unit) , p))
, ( identity Unit))
, \ _ → refl)
, ( ( ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl))
, ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl)))
, ( second (compute-pullback-to-Unit B A f a)
, is-equiv-identity Unit))
```
183 changes: 123 additions & 60 deletions src/simplicial-hott/03-extension-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -723,66 +723,6 @@ retraction to `#!rzk ext-htpy-eq`.
:= first (first (extext I ψ ϕ A a f g))
```

### Functoriality properties of extension types

By extension extensionality, fiberwise equivalences of extension types define
equivalences of extension types. For simplicity, we extend from `#!rzk BOT`.

```rzk
#def equiv-extension-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv ((t : ψ) → A t) ((t : ψ) → B t)
:=
( ( \ a t → (first (famequiv t)) (a t)) ,
( ( ( \ b t → (first (first (second (famequiv t)))) (b t)) ,
( \ a →
eq-ext-htpy
( I)
( ψ)
( \ t → BOT)
( A)
( \ u → recBOT)
( \ t →
first (first (second (famequiv t))) (first (famequiv t) (a t)))
( a)
( \ t → second (first (second (famequiv t))) (a t)))) ,
( ( \ b t → first (second (second (famequiv t))) (b t)) ,
( \ b →
eq-ext-htpy
( I)
( ψ)
( \ t → BOT)
( B)
( \ u → recBOT)
( \ t →
first (famequiv t) (first (second (second (famequiv t))) (b t)))
( b)
( \ t → second (second (second (famequiv t))) (b t))))))
```

Similarly, a fiberwise section of a map `(t : ψ) → A t → B t` induces a section
on extension types

```rzk
#def has-section-extension-has-section-family uses (naiveextext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( f : ( t : ψ) → A t → B t)
( has-fiberwise-section-f : (t : ψ) → has-section (A t ) (B t) (f t))
: has-section ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t))
:=
( ( \ b t → first (has-fiberwise-section-f t) (b t))
, \ b →
( naiveextext I ψ (\ _ → BOT) B (\ _ → recBOT)
( \ t → f t (first (has-fiberwise-section-f t) (b t)))
( \ t → b t)
( \ t → second (has-fiberwise-section-f t) (b t))))
```

### Homotopy extension property

We have a homotopy extension property.
Expand Down Expand Up @@ -1274,3 +1214,126 @@ The converse is of course trivial.
#end general-extension-types
```

## Functoriality of extension types

For simplicity, we only consider extesions of `#!rzk BOT`.

For each map `f : A → B` and each shape inclusion `ϕ ⊂ ψ`, we have a commutative
square.

```
(ψ → A') → (ψ → A)
↓ ↓
(ϕ → A') → (ϕ → A)
```

We can view it as a map of maps either vertically or horizontally.

```rzk
#def map-of-restriction-maps
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( f : (t : ψ) → A t → B t)
: map-of-maps
( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t)
( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t)
:=
( ( ( \ a t → f t (a t))
, ( \ a t → f t (a t)))
, \ _ → refl)
#def map-of-map-extension-type
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( f : (t : ψ) → A t → B t)
: map-of-maps
( (t : ψ) → A t) ( (t : ψ) → B t) (\ a t → f t (a t))
( (t : ϕ) → A t) ( (t : ϕ) → B t) (\ a t → f t (a t))
:=
( ( ( \ a t → a t)
, ( \ b t → b t))
, \ _ → refl)
```

It follows from extension extensionality that if `f : A → B` is an equivalence,
then so is the map of maps `map-of-restriction-maps`.

```rzk
#def is-equiv-extension-is-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( f : (t : ψ) → (A t) → (B t))
( is-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t))
: is-equiv ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t))
:= ( ( ( \ b t → (first (first (is-equiv-f t))) (b t))
, ( \ a →
eq-ext-htpy I ψ ( \ t → BOT)
( A)
( \ u → recBOT)
( \ t → first (first (is-equiv-f t)) (f t (a t)))
( a)
( \ t → second (first (is-equiv-f t)) (a t))))
, ( ( \ b t → first (second (is-equiv-f t)) (b t))
, ( \ b →
eq-ext-htpy I ψ ( \ t → BOT)
( B)
( \ u → recBOT)
( \ t → f t (first (second (is-equiv-f t)) (b t)))
( b)
( \ t → second (second (is-equiv-f t)) (b t)))))
#def equiv-extension-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv ((t : ψ) → A t) ((t : ψ) → B t)
:=
( ( \ a t → first ( famequiv t) (a t))
, is-equiv-extension-is-equiv-family I ψ A B
( \ t → first (famequiv t))
( \ t → second (famequiv t)))
#def equiv-of-restriction-maps-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv-of-maps
( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t)
( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t)
:=
( map-of-restriction-maps I ψ ϕ A B (\ t → first (famequiv t))
, ( second (equiv-extension-equiv-family I ψ A B famequiv)
, second ( equiv-extension-equiv-family I
(\ t → ϕ t) (\ t → A t) (\ t → B t) (\ t → famequiv t))))
```

Similarly, a fiberwise section of a map `(t : ψ) → A t → B t` induces a section
on extension types.

```rzk
#def has-section-extension-has-section-family uses (naiveextext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( f : ( t : ψ) → A t → B t)
( has-fiberwise-section-f : (t : ψ) → has-section (A t ) (B t) (f t))
: has-section ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t))
:=
( ( \ b t → first (has-fiberwise-section-f t) (b t))
, \ b →
( naiveextext I ψ (\ _ → BOT) B (\ _ → recBOT)
( \ t → f t (first (has-fiberwise-section-f t) (b t)))
( \ t → b t)
( \ t → second (has-fiberwise-section-f t) (b t))))
```
Loading

0 comments on commit 1b4c4f5

Please sign in to comment.