Skip to content

Commit

Permalink
Formatting
Browse files Browse the repository at this point in the history
  • Loading branch information
robin-carlier committed Sep 29, 2024
1 parent 95afdb8 commit 7a7758b
Showing 1 changed file with 22 additions and 19 deletions.
41 changes: 22 additions & 19 deletions src/simplicial-hott/09-yoneda.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -896,10 +896,11 @@ Initial objects map to initial objects by equivalences.

```rzk
#def is-inital-equiv-is-initial uses (extext)
(A B : U)
(e : Equiv A B)
(a : A)
(is-initial-a : is-initial A a) :
( A B : U)
( e : Equiv A B)
( a : A)
( is-initial-a : is-initial A a)
:
is-initial B (first e a)
:=
\ b →
Expand Down Expand Up @@ -1139,10 +1140,11 @@ Final objects map to final objects by equivalences.

```rzk
#def is-final-equiv-is-final uses (extext)
(A B : U)
(e : Equiv A B)
(a : A)
(is-final-a : is-final A a) :
( A B : U)
( e : Equiv A B)
( a : A)
( is-final-a : is-final A a)
:
is-final B (first e a)
:=
\ b →
Expand Down Expand Up @@ -1419,16 +1421,16 @@ condition a name.
( A)
( first is-rep-C)
( C)
(equiv-for-is-representable-family A C is-rep-C))
( equiv-for-is-representable-family A C is-rep-C))
, is-inital-equiv-is-initial
( coslice A (first is-rep-C))
( Σ (x : A) , (C x))
( Σ ( x : A) , (C x))
( total-equiv-family-of-equiv
( A)
(\ x → hom A (first is-rep-C) x)
( \ x → hom A (first is-rep-C) x)
( C)
( second is-rep-C))
( (first is-rep-C, id-hom A (first is-rep-C)))
( ( first is-rep-C , id-hom A (first is-rep-C)))
( is-initial-id-hom-is-segal A is-segal-A (first is-rep-C)))
#def is-representable-family-has-initial-tot
Expand All @@ -1437,7 +1439,7 @@ condition a name.
( C : A → U)
( is-covariant-C : is-covariant A C)
( has-initial-tot-A : has-initial-tot A C)
: (is-representable-family A C)
: ( is-representable-family A C)
:=
( first(first has-initial-tot-A)
, \ b →
Expand All @@ -1450,7 +1452,7 @@ condition a name.
( second(first has-initial-tot-A))
( b))
, is-equiv-is-contr-map
( hom A ( first(first has-initial-tot-A)) b)
( hom A (first(first has-initial-tot-A)) b)
( C b)
( yon
( A)
Expand All @@ -1462,9 +1464,9 @@ condition a name.
( b))
( \ v →
is-contr-equiv-is-contr
( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b, v))
( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b , v))
( fib
( hom A ( first(first has-initial-tot-A)) b)
( hom A (first(first has-initial-tot-A)) b)
( C b)
( yon
( A)
Expand All @@ -1476,8 +1478,8 @@ condition a name.
( b))
( v))
( equiv-comp
( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b, v))
( Σ (f : hom A (first(first has-initial-tot-A)) b)
( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b , v))
( Σ ( f : hom A (first(first has-initial-tot-A)) b)
, dhom
( A)
( first(first has-initial-tot-A))
Expand Down Expand Up @@ -1552,7 +1554,7 @@ condition a name.
( is-covariant-C)
( second(first has-initial-tot-A))
( v)))))
( second has-initial-tot-A (b, v)))))
( second has-initial-tot-A (b , v)))))
```

```rzk title="RS17, Proposition 9.10"
Expand All @@ -1577,3 +1579,4 @@ condition a name.
( is-covariant-C)
( has-initial-tot-A))
```

0 comments on commit 7a7758b

Please sign in to comment.