Skip to content

Commit

Permalink
Merge pull request #44 from dvmcarpena/issue-24
Browse files Browse the repository at this point in the history
Formalise Lemmas 10.7 and 10.8 from RS17
  • Loading branch information
Emily Riehl authored Sep 23, 2023
2 parents 99febfa + 3e83af4 commit c08cbaf
Showing 1 changed file with 64 additions and 1 deletion.
65 changes: 64 additions & 1 deletion src/simplicial-hott/10-rezk-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -435,14 +435,77 @@ map from `#!rzk x = y` to `#!rzk Iso A is-segal-A x y` is an equivalence.

```rzk title="RS17, Definition 10.6"
#def is-rezk
(A : U)
( A : U)
: U
:=
Σ ( is-segal-A : is-segal A) ,
(x : A) → (y : A) →
is-equiv (x = y) (Iso A is-segal-A x y) (iso-eq A is-segal-A x y)
```

The following results show how `#!rzk iso-eq` mediates between the
type-theoretic operations on paths and the category-theoretic operations on
arrows.

```rzk title="RS17, Lemma 10.7"
#def compute-covariant-transport-of-hom-family-iso-eq-is-segal
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( x y : A)
( e : x = y)
( u : C x)
: covariant-transport
( A)
( x)
( y)
( first (iso-eq A is-segal-A x y e))
( C)
( is-covariant-C)
( u)
= transport A C x y e u
:=
ind-path
( A)
( x)
( \ y' e' →
covariant-transport
( A)
( x)
( y')
( first (iso-eq A is-segal-A x y' e'))
( C)
( is-covariant-C)
( u)
= transport A C x y' e' u)
( id-arr-covariant-transport A x C is-covariant-C u)
( y)
( e)
```

```rzk title="RS17, Lemma 10.8"
#def compute-ap-hom-of-iso-eq
( A B : U)
( is-segal-A : is-segal A)
( is-segal-B : is-segal B)
( f : A → B)
( x y : A)
( e : x = y)
: ( ap-hom A B f x y (first (iso-eq A is-segal-A x y e))) =
( first ( iso-eq B is-segal-B (f x) (f y) (ap A B x y f e)))
:=
ind-path
( A)
( x)
( \ y' e' →
( ap-hom A B f x y' (first (iso-eq A is-segal-A x y' e'))) =
( first (iso-eq B is-segal-B (f x) (f y') (ap A B x y' f e'))))
( refl)
( y)
( e)
```

## Uniqueness of initial and final objects

In a Segal type, initial objects are isomorphic.
Expand Down

0 comments on commit c08cbaf

Please sign in to comment.