Skip to content

Commit

Permalink
Merge branch 'main' into fiber-products
Browse files Browse the repository at this point in the history
  • Loading branch information
Tashi Walde authored and Tashi Walde committed Oct 23, 2023
2 parents 832b25f + ca85956 commit e227582
Show file tree
Hide file tree
Showing 11 changed files with 955 additions and 400 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ results from the following papers:
- "[Limits and colimits of synthetic ∞-categories](https://arxiv.org/abs/2202.12386)"
[3]

This formalization project follows the philosophy layed out in the article
This formalization project follows the philosophy laid out in the article
"[Could ∞-category theory be taught to undergraduates?](https://www.ams.org/journals/notices/202305/noti2692/noti2692.html)"
[4].

Expand Down
18 changes: 18 additions & 0 deletions src/hott/07-fibers.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,13 @@ The homotopy fiber of a map is the following type:
( b : B)
: U
:= Σ (a : A) , (f a) = b
#def rev-fib
( A B : U)
( f : A → B)
( b : B)
: U
:= Σ (a : A) , b = (f a)
```

We calculate the transport of `#!rzk (a , q) : fib b` along `#!rzk p : a = a'`:
Expand Down Expand Up @@ -63,6 +70,17 @@ of the form `#!rzk (a, refl : f a = f a) : fib A B f`.
:=
ind-path B (f a) (\ b p → C b (a, p)) (s a) b q
#def ind-rev-fib
( A B : U)
( f : A → B)
( C : (b : B) → rev-fib A B f b → U)
( s : (a : A) → C (f a) (a, refl))
( b : B)
( (a, q) : rev-fib A B f b)
: C b (a, q)
:=
ind-path-end B (f a) (\ b p → C b (a, p)) (s a) b q
#def ind-fib-computation
( A B : U)
( f : A → B)
Expand Down
109 changes: 109 additions & 0 deletions src/hott/11-homotopy-pullbacks.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -834,3 +834,112 @@ We summarize the result as the following equivalence:
#end fibers-comm-square
```

## Applications

### Maps induced on fibers

As an application of `#!rzk is-homotopy-cartesian-is-horizontal-equiv`, we show
that an equivalence of maps induces an equivalence of fibers at each base point.

```rzk
#section is-equiv-map-of-fibers-is-equiv-map-of-maps
#variables A' A : U
#variable α : A' → A
#variables B' B : U
#variable β : B' → B
#variable map-of-maps-α-β : map-of-maps A' A α B' B β
-- To avoid polluting the global namespace, we add a random suffix to
-- identifiers that are only supposed to be used in this section.
#def s'-c4XT uses (A α B β) : A' → B' := first (first map-of-maps-α-β)
#def s-c4XT uses (A' α B' β) : A → B := second (first map-of-maps-α-β)
#def map-of-fibers-map-of-maps
( a : A)
( (a', p) : fib A' A α a)
: fib B' B β (s-c4XT a)
:=
( s'-c4XT a'
, ( concat B (β (s'-c4XT a')) (s-c4XT (α a')) (s-c4XT a))
( second map-of-maps-α-β a')
( ap A B (α a') a s-c4XT p))
#def map-of-sums-of-fibers-map-of-maps uses (map-of-maps-α-β)
( (a, u) : Σ (a : A), fib A' A α a)
: Σ (b : B), fib B' B β b
:= (s-c4XT a, map-of-fibers-map-of-maps a u)
#def sums-of-fibers-to-domains-map-of-maps uses (map-of-maps-α-β)
: map-of-maps
( Σ (a : A), fib A' A α a)
( Σ (b : B), fib B' B β b)
( map-of-sums-of-fibers-map-of-maps)
( A')
( B')
( s'-c4XT)
:=
((( \ (_, (a', _)) → a'), ( \ (_, (b', _)) → b')), \ (a, u) → refl)
#variable is-equiv-s' : is-equiv A' B' s'-c4XT
#def is-equiv-map-of-sums-of-fibers-is-equiv-map-of-domains
uses (map-of-maps-α-β is-equiv-s')
: is-equiv
( Σ (a : A), fib A' A α a)
( Σ (b : B), fib B' B β b)
( map-of-sums-of-fibers-map-of-maps)
:=
is-equiv-equiv-is-equiv
( Σ (a : A), fib A' A α a)
( Σ (b : B), fib B' B β b)
( map-of-sums-of-fibers-map-of-maps)
( A')
( B')
( s'-c4XT)
( sums-of-fibers-to-domains-map-of-maps)
( second
( ( inv-equiv A' (Σ (a : A), fib A' A α a))
( equiv-domain-sum-of-fibers A' A α)))
( second
( ( inv-equiv B' (Σ (b : B), fib B' B β b))
( equiv-domain-sum-of-fibers B' B β)))
( is-equiv-s')
#variable is-equiv-s : is-equiv A B s-c4XT
#def is-equiv-map-of-fibers-is-equiv-map-of-maps
uses (map-of-maps-α-β is-equiv-s is-equiv-s')
: (a : A)
→ is-equiv
( fib A' A α a)
( fib B' B β (s-c4XT a))
( map-of-fibers-map-of-maps a)
:=
is-homotopy-cartesian-is-horizontal-equiv
( A)
( fib A' A α)
( B)
( fib B' B β)
( s-c4XT)
( map-of-fibers-map-of-maps)
( is-equiv-s)
( is-equiv-map-of-sums-of-fibers-is-equiv-map-of-domains)
#end is-equiv-map-of-fibers-is-equiv-map-of-maps
#def Equiv-of-fibers-Equiv-of-maps
( A' A : U)
( α : A' → A)
( B' B : U)
( β : B' → B)
( (((s', s), η), (is-equiv-s, is-equiv-s')) : Equiv-of-maps A' A α B' B β)
(a : A)
: Equiv (fib A' A α a) (fib B' B β (s a))
:=
( map-of-fibers-map-of-maps A' A α B' B β ((s', s), η) a
, ( is-equiv-map-of-fibers-is-equiv-map-of-maps A' A α B' B β ((s', s), η))
( is-equiv-s)
( is-equiv-s')
( a))
```
2 changes: 1 addition & 1 deletion src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ results from the following papers:
- "[Limits and colimits of synthetic ∞-categories](https://arxiv.org/abs/2202.12386)"
[^3]

This formalization project follows the philosophy layed out in the article
This formalization project follows the philosophy laid out in the article
"[Could ∞-category theory be taught to undergraduates?](https://www.ams.org/journals/notices/202305/noti2692/noti2692.html)"
[^4].

Expand Down
Loading

0 comments on commit e227582

Please sign in to comment.