Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Discrete fibers Cor. 8.20 RS17 #135

Merged
merged 31 commits into from
Dec 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
0aa71f3
Merge pull request #96 from rzk-lang/ci-format
fredrik-bakke Oct 8, 2023
36dd404
Merge branch 'rzk-lang:main' into main
StiephenPradal Oct 9, 2023
e71e683
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 9, 2023
76d46d4
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 9, 2023
ea9f54c
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 9, 2023
9e90f8c
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 9, 2023
a328cc7
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 10, 2023
77cdd40
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 10, 2023
ff7ebd6
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 11, 2023
4c5fcef
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 11, 2023
739ac71
Corollary 8.20 + commented out stuff
StiephenPradal Oct 24, 2023
ed58cd9
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT
StiephenPradal Oct 24, 2023
b1687ae
Merge branch 'main' of https://github.com/rzk-lang/sHoTT
StiephenPradal Oct 24, 2023
61140e3
Merge branch 'main' of https://github.com/StiephenPradal/sHoTT into D…
StiephenPradal Oct 24, 2023
603ec2f
f_# is an equiv if f is an equiv
StiephenPradal Oct 26, 2023
01757db
Weakening assumption from equiv to retrqction for ap-hom
StiephenPradal Oct 27, 2023
0c3f852
Merge branch 'rzk-lang:main' into Discrete-Fibers
StiephenPradal Oct 27, 2023
efcb1e0
Cleaning up + Adding comments
StiephenPradal Oct 27, 2023
bbcbbd0
Adding comments
StiephenPradal Oct 27, 2023
63b2fca
Adding comments
StiephenPradal Oct 27, 2023
be4b5bb
Merge branch 'main' into Discrete-Fibers
Nov 4, 2023
ff5a066
condensed indentation
Nov 4, 2023
01ad86f
spelling of discreteness
Nov 4, 2023
1fe1f5e
Merge branch 'main' of https://github.com/rzk-lang/sHoTT into Discret…
StiephenPradal Nov 10, 2023
cc8361e
Improvement of equiv-preserve-discreteness and has-retraction-ap-hom-…
StiephenPradal Nov 13, 2023
7d8f923
Merge branch 'main' into Discrete-Fibers
Nov 17, 2023
156d49b
Merge branch 'main' into Discrete-Fibers
Nov 21, 2023
73578f8
Reorganisation of Functoriality of Extension Types
StiephenPradal Nov 23, 2023
72f4d58
Merge branch 'Discrete-Fibers' of https://github.com/StiephenPradal/s…
StiephenPradal Nov 23, 2023
bff3555
Fixing spacing
StiephenPradal Nov 23, 2023
a1ee8ee
cosmetic edits
Nov 23, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions src/hott/02-homotopies.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,27 @@ $K^{-1} \cdot H \sim \text{refl-htpy}_{g}$
g
```

## Composition of equal maps

```rzk

#def comp-homotopic-maps
( A B C : U)
( f g : A → B)
( h k : B → C)
( p : f = g)
( q : h = k)
: comp A B C h f = comp A B C k g
:=
ind-path (A → B) f (\ g' p' → comp A B C h f = comp A B C k g')
( ind-path (B → C) h (\ k' q' → comp A B C h f = comp A B C k' f)
( refl)
( k)
( q))
( g)
( p)
```

## Naturality

```rzk title="The naturality square associated to a homotopy and a path"
Expand Down
22 changes: 22 additions & 0 deletions src/hott/03-equivalences.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -813,6 +813,28 @@ identifications. This defines `#!rzk eq-htpy` to be the retraction to
( f g : (x : X) → A x)
: ((x : X) → f x = g x) → (f = g)
:= first (first (funext X A f g))

#def left-cancel-is-equiv uses (funext)
emilyriehl marked this conversation as resolved.
Show resolved Hide resolved
( A B : U)
( f : A → B)
( is-equiv-f : is-equiv A B f)
: (comp A B A (π₁ (π₁ is-equiv-f)) f) = (identity A)
:=
eq-htpy A (\ x' → A)
( comp A B A (π₁ (π₁ is-equiv-f)) f)
( identity A)
( π₂ (π₁ is-equiv-f))

#def right-cancel-is-equiv uses (funext)
( A B : U)
( f : A → B)
( is-equiv-f : is-equiv A B f)
: (comp B A B f (π₁ (π₂ is-equiv-f))) = (identity B)
:=
eq-htpy B (\ x' → B)
( comp B A B f (π₁ (π₂ is-equiv-f)))
( identity B)
( π₂ (π₂ is-equiv-f))
```

Using function extensionality, a fiberwise equivalence defines an equivalence of
Expand Down
235 changes: 134 additions & 101 deletions src/simplicial-hott/03-extension-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,8 @@ This is a literate `rzk` file:

## Prerequisites

- `hott/4-equivalences.rzk` — contains the definitions of `#!rzk Equiv` and
- `hott/03-equivalences.rzk.md` — contains the definitions of `#!rzk Equiv` and
`#!rzk comp-equiv`
- the file `hott/4-equivalences.rzk` relies in turn on the previous files in
`hott/`

## Extension up to homotopy

Expand Down Expand Up @@ -356,6 +354,25 @@ For each of these we provide a corresponding functorial instance
( ( \ g → (\ t → (first (g t)) , \ t → second (g t)))
, ( ( \ (f , h) t → (f t , h t) , \ _ → refl)
, ( \ (f , h) t → (f t , h t) , \ _ → refl)))

#def inv-equiv-axiom-choice
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( X : ψ → U)
( Y : (t : ψ) → (x : X t) → U)
( a : (t : ϕ) → X t)
( b : (t : ϕ) → Y t (a t))
: Equiv
( Σ ( f : ((t : ψ) → X t [ϕ t ↦ a t]))
, ( (t : ψ) → Y t (f t) [ϕ t ↦ b t]))
( (t : ψ) → (Σ (x : X t) , Y t x) [ϕ t ↦ (a t , b t)])
:=
inv-equiv
( (t : ψ) → (Σ (x : X t) , Y t x) [ϕ t ↦ (a t , b t)])
( Σ ( f : ((t : ψ) → X t [ϕ t ↦ a t]))
, ( (t : ψ) → Y t (f t) [ϕ t ↦ b t]))
( axiom-choice I ψ ϕ X Y a b)
```

## Composites and unions of cofibrations
Expand Down Expand Up @@ -1185,39 +1202,70 @@ Given a map `α : A' → A`, there is also a notion of relative extension types.
#variable I : CUBE
#variable ψ : I → TOPE
#variable ϕ : ψ → TOPE
#variables A' A : ψ → U
#variable α : (t : ψ) → A' t → A t
#variable σ' : (t : ϕ) → A' t
#variable τ : (t : ψ) → A t [ϕ t ↦ α t (σ' t)]
#variables A B : ψ → U
#variable f : (t : ψ) → A t → B t
#variable a : (t : ϕ) → A t
#variable τ : (t : ψ) → B t [ϕ t ↦ f t (a t)]

#def relative-extension-type
: U
:=
Σ ( τ' : (t : ψ) → A' t [ϕ t ↦ σ' t])
, ( ( t : ψ) → (α t (τ' t) = τ t) [ϕ t ↦ refl])
Σ ( τ' : (t : ψ) → A t [ϕ t ↦ a t])
, ( ( t : ψ) → (f t (τ' t) = τ t) [ϕ t ↦ refl])
```

#def relative-extension-type'
This is equivalently expressed as the fibers of postcomposition by $f$.

```rzk
#def postcomp-Π-ext
: ((t : ψ) → A t [ϕ t ↦ a t]) →
((t : ψ) → B t [ϕ t ↦ f t (a t)])
:= ( \ τ' t → f t (τ' t))

#def fiber-postcomp-Π-ext
: U
:=
fib
( (t : ψ) → A' t [ϕ t ↦ σ' t])
( (t : ψ) → A t [ϕ t ↦ α t (σ' t)])
( \ τ' t → α t (τ' t))
( (t : ψ) → A t [ϕ t ↦ a t])
( (t : ψ) → B t [ϕ t ↦ f t (a t)])
( postcomp-Π-ext)
( τ)

#def equiv-relative-extension-type-fib uses (extext)
: Equiv
( relative-extension-type')
( fiber-postcomp-Π-ext)
( relative-extension-type)
:=
total-equiv-family-of-equiv
( (t : ψ) → A' t [ϕ t ↦ σ' t])
( \ τ' → (\ t → α t (τ' t)) =_{ (t : ψ) → A t [ϕ t ↦ α t (σ' t)]} τ)
( \ τ' → (t : ψ) → (α t (τ' t) = τ t) [ϕ t ↦ refl])
( (t : ψ) → A t [ϕ t ↦ a t])
( \ τ' → (\ t → f t (τ' t)) =_{ (t : ψ) → B t [ϕ t ↦ f t (a t)]} τ)
( \ τ' → (t : ψ) → (f t (τ' t) = τ t) [ϕ t ↦ refl])
( \ τ' →
equiv-ExtExt extext I ψ ϕ A
( \ t → α t (σ' t))
( \ t → α t (τ' t)) ( τ))
equiv-ExtExt extext I ψ ϕ B
( \ t → f t (a t))
( \ t → f t (τ' t)) ( τ))
```

The fiber of postcomposition by a map $f: \prod_{t : I|\psi} A (t) \to B (t)$ is
equivalent to the family of fibers of $f\_t$.

```rzk
#def fiber-family-ext
: U
:= (t : ψ) → fib (A t) (B t) (f t) (τ t) [ϕ t ↦ (a t, refl)]

#def equiv-fiber-postcomp-Π-ext-fiber-family-ext uses (extext)
: Equiv
( fiber-postcomp-Π-ext)
( fiber-family-ext)
:=
equiv-comp
( fiber-postcomp-Π-ext)
( relative-extension-type)
( fiber-family-ext)
( equiv-relative-extension-type-fib)
( inv-equiv-axiom-choice I ψ ϕ A (\ t x → f t x = τ t) a (\ t → refl))

#end relative-extension-types
```

Expand Down Expand Up @@ -1345,9 +1393,7 @@ We can view it as a map of maps either vertically or horizontally.
( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t)
( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t)
:=
( ( ( \ a t → f t (a t))
, ( \ a t → f t (a t)))
, \ _ → refl)
( ( (\ a t → f t (a t)), (\ a t → f t (a t))), \ _ → refl)

#def map-of-map-extension-type
( I : CUBE)
Expand All @@ -1359,74 +1405,52 @@ We can view it as a map of maps either vertically or horizontally.
( (t : ψ) → A t) ( (t : ψ) → B t) (\ a t → f t (a t))
( (t : ϕ) → A t) ( (t : ϕ) → B t) (\ a t → f t (a t))
:=
( ( ( \ a t → a t)
, ( \ b t → b t))
, \ _ → refl)
( ( (\ a t → a t), (\ b t → b t)), \ _ → refl)
```

### Equivalences induce equivalences of extension types

We start by treating the case of extensions from the empty shape `BOT`.

It follows from extension extensionality that if `f : A → B` is an equivalence,
then so is the map of maps `map-of-restriction-maps`.
If $f: \prod_{t : I|\psi} A (t) \to B (t)$ is a family of equivalence then the
fibers of postcomposition by $f$ are contractible.

```rzk
#def is-equiv-extensions-BOT-is-equiv uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( f : (t : ψ) → (A t) → (B t))
( is-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t))
: is-equiv ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t))
:= ( ( ( \ b t → (first (first (is-equiv-f t))) (b t))
, ( \ a →
naiveextext-extext extext I ψ ( \ t → BOT)
( A)
( \ u → recBOT)
( \ t → first (first (is-equiv-f t)) (f t (a t)))
( a)
( \ t → second (first (is-equiv-f t)) (a t))))
, ( ( \ b t → first (second (is-equiv-f t)) (b t))
, ( \ b →
naiveextext-extext extext I ψ ( \ t → BOT)
( B)
( \ u → recBOT)
( \ t → f t (first (second (is-equiv-f t)) (b t)))
( b)
( \ t → second (second (is-equiv-f t)) (b t)))))

#def equiv-extensions-BOT-equiv uses (extext)

#def is-contr-fiber-family-ext-contr-fib
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv ((t : ψ) → A t) ((t : ψ) → B t)
( f : (t : ψ) → A t → B t)
( a : (t : ϕ) → A t)
( τ : (t : ψ) → B t [ϕ t ↦ f t (a t)])
( family-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t))
: is-contr (fiber-family-ext I ψ ϕ A B f a τ)
:=
( ( \ a t → first ( famequiv t) (a t))
, is-equiv-extensions-BOT-is-equiv I ψ A B
( \ t → first (famequiv t))
( \ t → second (famequiv t)))
(weakextext-extext extext) I ψ ϕ
( \ t → fib (A t) (B t) (f t) (τ t))
( \ t → is-contr-map-is-equiv (A t) (B t) (f t) (family-equiv-f t) (τ t))
( \ t → (a t, refl))

#def equiv-of-restriction-maps-equiv uses (extext)
#def is-contr-fiber-postcomp-Π-ext-is-equiv-fam uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv-of-maps
( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t)
( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t)
:=
( map-of-restriction-maps I ψ ϕ A B (\ t → first (famequiv t))
, ( second (equiv-extensions-BOT-equiv I ψ A B famequiv)
, second ( equiv-extensions-BOT-equiv I
(\ t → ϕ t) (\ t → A t) (\ t → B t) (\ t → famequiv t))))
( f : (t : ψ) → A t → B t)
( a : (t : ϕ) → A t)
( τ : (t : ψ) → B t [ϕ t ↦ f t (a t)])
( family-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t))
: is-contr (fiber-postcomp-Π-ext I ψ ϕ A B f a τ)
:=
is-contr-equiv-is-contr'
( fiber-postcomp-Π-ext I ψ ϕ A B f a τ)
( fiber-family-ext I ψ ϕ A B f a τ)
( equiv-fiber-postcomp-Π-ext-fiber-family-ext I ψ ϕ A B f a τ)
( is-contr-fiber-family-ext-contr-fib I ψ ϕ A B f a τ family-equiv-f)
```

Now we use the result for extensions of `BOT` to bootstrap to arbitrary
extensions. We show that an equivalence `f : A → B` induces an equivalence of
all extension types, not just those extended from `BOT`.
Hence, postcomposing with an equivalence induces an equivalence of extension
types.

```rzk
#def is-equiv-extensions-is-equiv uses (extext)
Expand All @@ -1435,31 +1459,19 @@ all extension types, not just those extended from `BOT`.
( ϕ : ψ → TOPE)
( A B : ψ → U)
( f : (t : ψ) → A t → B t)
( is-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t))
: ( a : (t : ϕ) → A t)
is-equiv
( a : (t : ϕ) → A t)
( family-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t))
: is-equiv
( (t : ψ) → A t [ϕ t ↦ a t])
( (t : ψ) → B t [ϕ t ↦ f t (a t)])
( \ a' t → f t (a' t))
( postcomp-Π-ext I ψ ϕ A B f a)
:=
is-homotopy-cartesian-is-horizontal-equiv
( (t : ϕ) → A t)
( \ a → (t : ψ) → A t [ϕ t ↦ a t])
( (t : ϕ) → B t)
( \ b → (t : ψ) → B t [ϕ t ↦ b t])
( \ a t → f t (a t))
( \ _ a' t → f t (a' t))
( is-equiv-extensions-BOT-is-equiv
( I) (\ t → ϕ t) (\ t → A t) (\ t → B t) ( \ t → f t)
( \ (t : ϕ) → is-equiv-f t))
( is-equiv-Equiv-is-equiv'
( (t : ψ) → A t) ((t : ψ) → B t) (\ a' t → f t (a' t))
( Σ (a : (t : ϕ) → A t) , ((t : ψ) → A t [ϕ t ↦ a t]))
( Σ (b : (t : ϕ) → B t) , ((t : ψ) → B t [ϕ t ↦ b t]))
( \ (a , a') → ( \ t → f t (a t) , \ t → f t (a' t)))
( cofibration-composition-functorial
I ψ ϕ (\ _ → BOT) A B f (\ _ → recBOT))
( is-equiv-extensions-BOT-is-equiv I ψ A B f is-equiv-f))
is-equiv-is-contr-map
( (t : ψ) → A t [ϕ t ↦ a t])
( (t : ψ) → B t [ϕ t ↦ f t (a t)])
( postcomp-Π-ext I ψ ϕ A B f a)
( \ τ →
is-contr-fiber-postcomp-Π-ext-is-equiv-fam I ψ ϕ A B f a τ family-equiv-f)

#def equiv-extensions-equiv uses (extext)
( I : CUBE)
Expand All @@ -1472,11 +1484,31 @@ all extension types, not just those extended from `BOT`.
( (t : ψ) → A t [ϕ t ↦ a t])
( (t : ψ) → B t [ϕ t ↦ first (equivs-A-B t) (a t)])
:=
( ( \ a' t → first (equivs-A-B t) (a' t))
, ( is-equiv-extensions-is-equiv I ψ ϕ A B
( postcomp-Π-ext I ψ ϕ A B (\ t → (first (equivs-A-B t))) a
, is-equiv-extensions-is-equiv I ψ ϕ A B
( \ t → first (equivs-A-B t))
( \ t → second (equivs-A-B t))
( a)))
( a)
( \ t → second (equivs-A-B t)))

#def equiv-of-restriction-maps-equiv uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv-of-maps
( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t)
( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t)
:=
( map-of-restriction-maps I ψ ϕ A B (\ t → first (famequiv t))
, ( second (equiv-extensions-equiv I ψ ( \ _ → BOT)
( A) ( B)
( famequiv)
( \ _ → recBOT))
, second ( equiv-extensions-equiv I ( \ t → ϕ t) ( \ _ → BOT)
( \ t → A t) ( \ t → B t)
( \ t → famequiv t)
( \ _ → recBOT))))
```

### Retracts induce retracts of extension types
Expand Down Expand Up @@ -1508,8 +1540,9 @@ working with external retractions.
:=
is-equiv-extensions-is-equiv I ψ ϕ A A
( \ t a₀ → r t (s t (a₀)))
( \ t → is-equiv-retraction-section (A t) (B t) (s t) (r t) (η t))
( a)
( \ t → is-equiv-retraction-section (A t) (B t) (s t) (r t) (η t))


#def has-retraction-extensions-has-retraction' uses (extext η)
( a : (t : ϕ) → A t)
Expand Down
Loading