Skip to content

Commit

Permalink
Merge pull request SciML#363 from SouthEndMusic/more_extrapolation_op…
Browse files Browse the repository at this point in the history
…tions

Add extrapolation types `periodic` and `reflective`
  • Loading branch information
ChrisRackauckas authored Dec 1, 2024
2 parents 7df4954 + 120e56f commit 6f7a38a
Show file tree
Hide file tree
Showing 22 changed files with 983 additions and 268 deletions.
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ uuid = "82cc6244-b520-54b8-b5a6-8a565e85f1d0"
version = "6.6.0"

[deps]
EnumX = "4e289a0a-7415-4d19-859d-a7e5c4648b56"
FindFirstFunctions = "64ca27bc-2ba2-4a57-88aa-44e436879224"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -27,6 +28,7 @@ DataInterpolationsSymbolicsExt = "Symbolics"
Aqua = "0.8"
BenchmarkTools = "1"
ChainRulesCore = "1.24"
EnumX = "1.0.4"
FindFirstFunctions = "1.3"
FiniteDifferences = "0.12.31"
ForwardDiff = "0.10.36"
Expand Down
3 changes: 2 additions & 1 deletion docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,8 @@ makedocs(modules = [DataInterpolations],
linkcheck = true,
format = Documenter.HTML(assets = ["assets/favicon.ico"],
canonical = "https://docs.sciml.ai/DataInterpolations/stable/"),
pages = ["index.md", "Methods" => "methods.md",
pages = ["index.md", "Interpolation methods" => "methods.md",
"Extrapolation methods" => "extrapolation_methods.md",
"Interface" => "interface.md", "Using with Symbolics/ModelingToolkit" => "symbolics.md",
"Manual" => "manual.md", "Inverting Integrals" => "inverting_integrals.md"])

Expand Down
90 changes: 90 additions & 0 deletions docs/src/extrapolation_methods.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Extrapolation methods

We will use the following interpolation to demonstrate the various extrapolation methods.

```@example tutorial
using DataInterpolations, Plots
u = [0.86, 0.65, 0.44, 0.76, 0.73]
t = [0.0022, 0.68, 1.41, 2.22, 2.46]
t_eval_left = range(-1, first(t), length = 25)
t_eval_right = range(last(t), 3.5, length = 25)
A = QuadraticSpline(u, t)
plot(A)
```

Extrapolation behavior can be set left and right of the data simultaneously with the `extension` keyword, or left and right separately with the `extrapolation_left` and `extrapolation_right` keywords respectively.

## `ExtrapolationType.None`

This extrapolation type will throw an error when the input `t` is beyond the data in the specified direction.

## `ExtrapolationType.Constant`

This extrapolation type extends the interpolation with the boundary values of the data `u`.

```@example tutorial
A = QuadraticSpline(u, t; extrapolation = ExtrapolationType.Constant)
plot(A)
plot!(t_eval_left, A.(t_eval_left); label = "extrapolation left")
plot!(t_eval_right, A.(t_eval_right); label = "extrapolation right")
```

## `ExtrapolationType.Linear`

This extrapolation type extends the interpolation with a linear continuation of the interpolation, making it $C^1$ smooth at the data boundaries.

```@example tutorial
A = QuadraticSpline(u, t; extrapolation = ExtrapolationType.Linear)
plot(A)
plot!(t_eval_left, A.(t_eval_left); label = "extrapolation left")
plot!(t_eval_right, A.(t_eval_right); label = "extrapolation right")
```

## `ExtrapolationType.Extension`

This extrapolation type extends the interpolation with a continuation of the expression for the interpolation at the boundary intervals for maximum smoothness.

```@example tutorial
A = QuadraticSpline(u, t; extrapolation = ExtrapolationType.Extension)
plot(A)
plot!(t_eval_left, A.(t_eval_left); label = "extrapolation down")
plot!(t_eval_right, A.(t_eval_right); label = "extrapolation up")
```

## `ExtrapolationType.Periodic`

this extrapolation type extends the interpolation such that `A(t + T) == A(t)` for all `t`, where the period is given by `T = last(A.t) - first(A.t)`.

```@example tutorial
T = last(A.t) - first(A.t)
t_eval_left = range(first(t) - 2T, first(t), length = 100)
t_eval_right = range(last(t), last(t) + 2T, length = 100)
A = QuadraticSpline(u, t; extrapolation = ExtrapolationType.Periodic)
plot(A)
plot!(t_eval_left, A.(t_eval_left); label = "extrapolation down")
plot!(t_eval_right, A.(t_eval_right); label = "extrapolation up")
```

## `ExtrapolationType.Reflective`

this extrapolation type extends the interpolation such that `A(t_ + t) == A(t_ - t)` for all `t_, t` such that `(t_ - first(A.t)) % T == 0` and `0 < t < T`, where `T = last(A.t) - first(A.t)`.

```@example tutorial
A = QuadraticSpline(u, t; extrapolation = ExtrapolationType.Reflective)
plot(A)
plot!(t_eval_left, A.(t_eval_left); label = "extrapolation down")
plot!(t_eval_right, A.(t_eval_right); label = "extrapolation up")
```

## Mixed extrapolation

You can also have different extrapolation types left and right of the data.

```@example tutorial
A = QuadraticSpline(u, t; extrapolation_left = ExtrapolationType.Reflective,
extrapolation_right = ExtrapolationType.Periodic)
plot(A)
plot!(t_eval_left, A.(t_eval_left); label = "extrapolation left")
plot!(t_eval_right, A.(t_eval_right); label = "extrapolation right")
```
4 changes: 2 additions & 2 deletions docs/src/interface.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,15 +17,15 @@ t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3]

All interpolation methods return an object from which we can compute the value of the dependent variable at any time point.

We will use the `CubicSpline` method for demonstration, but the API is the same for all the methods. We can also pass the `extrapolate = true` keyword if we want to allow the interpolation to go beyond the range of the timepoints. The default value is `extrapolate = false`.
We will use the `CubicSpline` method for demonstration, but the API is the same for all the methods. We can also pass the `extrapolation = ExtrapolationType.Extension` keyword if we want to allow the interpolation to go beyond the range of the timepoints in the positive `t` direction. The default value is `extrapolation = ExtrapolationType.None`. For more information on extrapolation see [Extrapolation methods](extrapolation_methods.md).

```@example interface
A1 = CubicSpline(u, t)
# For interpolation do, A(t)
A1(100.0)
A2 = CubicSpline(u, t; extrapolate = true)
A2 = CubicSpline(u, t; extrapolation = ExtrapolationType.Extension)
# Extrapolation
A2(300.0)
Expand Down
70 changes: 47 additions & 23 deletions ext/DataInterpolationsRegularizationToolsExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -69,13 +69,17 @@ A = RegularizationSmooth(u, t, t̂, wls, wr, d; λ = 1.0, alg = :gcv_svd)
"""
function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector,
wls::AbstractVector, wr::AbstractVector, d::Int = 2;
λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false)
λ::Real = 1.0, alg::Symbol = :gcv_svd,
extrapolation_left::ExtrapolationType.T = ExtrapolationType.None,
extrapolation_right::ExtrapolationType.T = ExtrapolationType.None)
u, t = munge_data(u, t)
M = _mapping_matrix(t̂, t)
Wls½ = LA.diagm(sqrt.(wls))
Wr½ = LA.diagm(sqrt.(wr))
û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate)
RegularizationSmooth(u, û, t, t̂, wls, wr, d, λ, alg, Aitp, extrapolate)
û, λ, Aitp = _reg_smooth_solve(
u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolation_left, extrapolation_right)
RegularizationSmooth(
u, û, t, t̂, wls, wr, d, λ, alg, Aitp, extrapolation_left, extrapolation_right)
end
"""
Direct smoothing, no `t̂` or weights
Expand All @@ -86,14 +90,16 @@ A = RegularizationSmooth(u, t, d; λ = 1.0, alg = :gcv_svd, extrapolate = false)
"""
function RegularizationSmooth(u::AbstractVector, t::AbstractVector, d::Int = 2;
λ::Real = 1.0,
alg::Symbol = :gcv_svd, extrapolate::Bool = false)
alg::Symbol = :gcv_svd, extrapolation_left::ExtrapolationType.T = ExtrapolationType.None,
extrapolation_right::ExtrapolationType.T = ExtrapolationType.None)
u, t = munge_data(u, t)
= t
N = length(t)
M = Array{Float64}(LA.I, N, N)
Wls½ = Array{Float64}(LA.I, N, N)
Wr½ = Array{Float64}(LA.I, N - d, N - d)
û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate)
û, λ, Aitp = _reg_smooth_solve(
u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolation_left, extrapolation_right)
RegularizationSmooth(u,
û,
t,
Expand All @@ -104,7 +110,8 @@ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, d::Int = 2;
λ,
alg,
Aitp,
extrapolate)
extrapolation_left,
extrapolation_right)
end
"""
`t̂` provided, no weights
Expand All @@ -115,13 +122,15 @@ A = RegularizationSmooth(u, t, t̂, d; λ = 1.0, alg = :gcv_svd, extrapolate = f
"""
function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector,
d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd,
extrapolate::Bool = false)
extrapolation_left::ExtrapolationType.T = ExtrapolationType.None,
extrapolation_right::ExtrapolationType.T = ExtrapolationType.None)
u, t = munge_data(u, t)
N, N̂ = length(t), length(t̂)
M = _mapping_matrix(t̂, t)
Wls½ = Array{Float64}(LA.I, N, N)
Wr½ = Array{Float64}(LA.I, N̂ - d, N̂ - d)
û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate)
û, λ, Aitp = _reg_smooth_solve(
u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolation_left, extrapolation_right)
RegularizationSmooth(u,
û,
t,
Expand All @@ -132,7 +141,8 @@ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Abstrac
λ,
alg,
Aitp,
extrapolate)
extrapolation_left,
extrapolation_right)
end
"""
`t̂` and `wls` provided
Expand All @@ -143,13 +153,15 @@ A = RegularizationSmooth(u, t, t̂, wls, d; λ = 1.0, alg = :gcv_svd, extrapolat
"""
function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector,
wls::AbstractVector, d::Int = 2; λ::Real = 1.0,
alg::Symbol = :gcv_svd, extrapolate::Bool = false)
alg::Symbol = :gcv_svd, extrapolation_left::ExtrapolationType.T = ExtrapolationType.None,
extrapolation_right::ExtrapolationType.T = ExtrapolationType.None)
u, t = munge_data(u, t)
N, N̂ = length(t), length(t̂)
M = _mapping_matrix(t̂, t)
Wls½ = LA.diagm(sqrt.(wls))
Wr½ = Array{Float64}(LA.I, N̂ - d, N̂ - d)
û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate)
û, λ, Aitp = _reg_smooth_solve(
u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolation_left, extrapolation_right)
RegularizationSmooth(u,
û,
t,
Expand All @@ -160,7 +172,8 @@ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Abstrac
λ,
alg,
Aitp,
extrapolate)
extrapolation_left,
extrapolation_right)
end
"""
`wls` provided, no `t̂`
Expand All @@ -172,14 +185,16 @@ A = RegularizationSmooth(
"""
function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing,
wls::AbstractVector, d::Int = 2; λ::Real = 1.0,
alg::Symbol = :gcv_svd, extrapolate::Bool = false)
alg::Symbol = :gcv_svd, extrapolation_left::ExtrapolationType.T = ExtrapolationType.None,
extrapolation_right::ExtrapolationType.T = ExtrapolationType.None)
u, t = munge_data(u, t)
= t
N = length(t)
M = Array{Float64}(LA.I, N, N)
Wls½ = LA.diagm(sqrt.(wls))
Wr½ = Array{Float64}(LA.I, N - d, N - d)
û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate)
û, λ, Aitp = _reg_smooth_solve(
u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolation_left, extrapolation_right)
RegularizationSmooth(u,
û,
t,
Expand All @@ -190,7 +205,8 @@ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing
λ,
alg,
Aitp,
extrapolate)
extrapolation_left,
extrapolation_right)
end
"""
`wls` and `wr` provided, no `t̂`
Expand All @@ -202,14 +218,17 @@ A = RegularizationSmooth(
"""
function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing,
wls::AbstractVector, wr::AbstractVector, d::Int = 2;
λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false)
λ::Real = 1.0, alg::Symbol = :gcv_svd,
extrapolation_left::ExtrapolationType.T = ExtrapolationType.None,
extrapolation_right::ExtrapolationType.T = ExtrapolationType.None)
u, t = munge_data(u, t)
= t
N = length(t)
M = Array{Float64}(LA.I, N, N)
Wls½ = LA.diagm(sqrt.(wls))
Wr½ = LA.diagm(sqrt.(wr))
û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate)
û, λ, Aitp = _reg_smooth_solve(
u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolation_left, extrapolation_right)
RegularizationSmooth(u,
û,
t,
Expand All @@ -220,7 +239,8 @@ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing
λ,
alg,
Aitp,
extrapolate)
extrapolation_left,
extrapolation_right)
end
"""
Keyword provided for `wls`, no `t̂`
Expand All @@ -232,15 +252,17 @@ A = RegularizationSmooth(
"""
function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing,
wls::Symbol, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd,
extrapolate::Bool = false)
extrapolation_left::ExtrapolationType.T = ExtrapolationType.None,
extrapolation_right::ExtrapolationType.T = ExtrapolationType.None)
u, t = munge_data(u, t)
= t
N = length(t)
M = Array{Float64}(LA.I, N, N)
wls, wr = _weighting_by_kw(t, d, wls)
Wls½ = LA.diagm(sqrt.(wls))
Wr½ = LA.diagm(sqrt.(wr))
û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate)
û, λ, Aitp = _reg_smooth_solve(
u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolation_left, extrapolation_right)
RegularizationSmooth(u,
û,
t,
Expand All @@ -251,7 +273,8 @@ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing
λ,
alg,
Aitp,
extrapolate)
extrapolation_left,
extrapolation_right)
end
# """ t̂ provided and keyword for wls _TBD_ """
# function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector,
Expand All @@ -262,7 +285,8 @@ Solve for the smoothed dependent variables and create spline interpolator
"""
function _reg_smooth_solve(
u::AbstractVector, t̂::AbstractVector, d::Int, M::AbstractMatrix,
Wls½::AbstractMatrix, Wr½::AbstractMatrix, λ::Real, alg::Symbol, extrapolate::Bool)
Wls½::AbstractMatrix, Wr½::AbstractMatrix, λ::Real, alg::Symbol,
extrapolation_left::ExtrapolationType.T, extrapolation_right::ExtrapolationType.T)
λ = float(λ) # `float` expected by RT
D = _derivative_matrix(t̂, d)
Ψ = RT.setupRegularizationProblem(Wls½ * M, Wr½ * D)
Expand All @@ -279,7 +303,7 @@ function _reg_smooth_solve(
= result.x
λ = result.λ
end
Aitp = CubicSpline(û, t̂; extrapolate)
Aitp = CubicSpline(û, t̂; extrapolation_left, extrapolation_right)
# It seems logical to use B-Spline of order d+1, but I am unsure if theory supports the
# extra computational cost, JJS 12/25/21
#Aitp = BSplineInterpolation(û,t̂,d+1,:ArcLen,:Average)
Expand Down
Loading

0 comments on commit 6f7a38a

Please sign in to comment.