Skip to content

Localized Randomized Affine Shadowsampling (LoRAS) oversampling technique

License

Notifications You must be signed in to change notification settings

sbi-rostock/LoRAS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LoRAS

Localized Randomized Affine Shadowsampling (LoRAS) oversampling technique

Installation

The latest version is available on PyPi and installable with the command: pip install loras

Usage

There is just one method fit_resample(maj_class_points, min_class_points, k, num_shadow_points, list_sigma_f, num_generated_points, num_aff_comb, random_state=42)

There are two mandatory inputs:

  • maj_class_points : Majority class parent data points which is a non-empty list containing numpy arrays acting as points
  • min_class_points : Minority class parent data points which is a non-empty list containing numpy arrays acting as points

There are also optional parameters:

  • k : Number of nearest neighbours to be considered per parent data point (default value: 8 if len(min_class_points)<100 else 30)
  • num_shadow_points : Number of generated shadowsamples per parent data point (default value: ceil(2*num_aff_comb / k))
  • list_sigma_f : List of standard deviations for normal distributions for adding noise to each feature (default value: [0.005, ... , 0.005])
  • num_generated_points : Number of shadow points to be chosen for a random affine combination (default value: ceil((len(maj_class_points) + len(min_class_points)) / len(min_class_points)))
  • num_aff_comb : Number of generated LoRAS points for each nearest neighbours group (default value: min_class_points.shape[1])

Output:

  • min_class_points::oversampled_set : Concatenation of original data points and oversampled ones

About

Localized Randomized Affine Shadowsampling (LoRAS) oversampling technique

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 87.4%
  • Python 12.6%