Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implements sample_weight and optional permutation and SHAP importance, categorical features, boxplot #100

Open
wants to merge 24 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
172 changes: 172 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
### Python template
# example NB
examples/catboost_info/
examples/.ipynb_checkpoints/
examples/cb_model.json

# example NB
boruta/catboost_info/
boruta/.ipynb_checkpoints/
boruta/cb_model.json/

# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Pycharm
.idea/
.idea/*

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/

# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839

# User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/dictionaries
.idea/**/shelf

# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml

# Gradle
.idea/**/gradle.xml
.idea/**/libraries

# CMake
cmake-build-debug/
cmake-build-release/

# Mongo Explorer plugin
.idea/**/mongoSettings.xml

# File-based project format
*.iws

# IntelliJ
out/

# mpeltonen/sbt-idea plugin
.idea_modules/

# JIRA plugin
atlassian-ide-plugin.xml

# Cursive Clojure plugin
.idea/replstate.xml

# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

# Editor-based Rest Client
.idea/httpRequests
70 changes: 40 additions & 30 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,6 +118,17 @@ dividing the p-value threshold with the current iteration index.
If this two step correction is not required, the two_step parameter has to be
set to False, then (with perc=100) BorutaPy behaves exactly as the R version.


## Differences with the original Boruta scheme ##

- Allow using sample_weight, for applications like Poisson regression or
any requiring weights
- 3 different feature importances: native, SHAP (if installed) and permutation.
Native being the least consistent
(because of the imp. biased towards numerical and large cardinality categorical,
see [Beware Default Random Forest Importances](https://explained.ai/rf-importance/#5)
but the fastest of the 3.

## Parameters ##

__estimator__ : object
Expand Down Expand Up @@ -175,36 +186,35 @@ __verbose__ : int, default=0

## Examples ##

```python
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from boruta import BorutaPy

# load X and y
# NOTE BorutaPy accepts numpy arrays only, hence the .values attribute
X = pd.read_csv('examples/test_X.csv', index_col=0).values
y = pd.read_csv('examples/test_y.csv', header=None, index_col=0).values
y = y.ravel()

# define random forest classifier, with utilising all cores and
# sampling in proportion to y labels
rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)

# define Boruta feature selection method
feat_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=1)

# find all relevant features - 5 features should be selected
feat_selector.fit(X, y)

# check selected features - first 5 features are selected
feat_selector.support_

# check ranking of features
feat_selector.ranking_

# call transform() on X to filter it down to selected features
X_filtered = feat_selector.transform(X)
```
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from boruta import BorutaPy

# load X and y
# NOTE BorutaPy accepts numpy arrays only, hence the .values attribute
X = pd.read_csv('examples/test_X.csv', index_col=0).values
y = pd.read_csv('examples/test_y.csv', header=None, index_col=0).values
y = y.ravel()

# define random forest classifier, with utilising all cores and
# sampling in proportion to y labels
rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)

# define Boruta feature selection method
feat_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=1)

# find all relevant features - 5 features should be selected
feat_selector.fit(X, y)

# check selected features - first 5 features are selected
feat_selector.support_

# check ranking of features
feat_selector.ranking_

# call transform() on X to filter it down to selected features
X_filtered = feat_selector.transform(X)


## References ##

Expand Down
2 changes: 1 addition & 1 deletion boruta/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
from .boruta_py import BorutaPy
from .boruta_py import BorutaPy
Loading