Skip to content

Commit

Permalink
- implement a new ModeBasedAssigner class extending RandomGroupedAssi…
Browse files Browse the repository at this point in the history
…gner

- update defaults/assigner.yaml to use ModeBasedAssigner with default mode to train_and_validate
- update fedeval sample workspace to use default assigner, tasks and aggregator
- use of federated-evaluation/aggregator.yaml for FedEval specific workspace example to use round_number as 1
- removed assigner and tasks yaml from defaults/federated-evaluation, superseded by default assigner/tasks
- add tests for ModeBasedAssigner
Signed-off-by: Shailesh Pant <[email protected]>
  • Loading branch information
ishaileshpant committed Dec 23, 2024
1 parent bc5ba2b commit 6a04db5
Show file tree
Hide file tree
Showing 8 changed files with 150 additions and 18 deletions.
8 changes: 5 additions & 3 deletions openfl-workspace/torch_cnn_mnist_fed_eval/plan/plan.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -34,10 +34,12 @@ network :
defaults : plan/defaults/network.yaml

assigner :
defaults : plan/defaults/federated-evaluation/assigner.yaml

defaults : plan/defaults/assigner.yaml
settings :
mode : evaluate

tasks :
defaults : plan/defaults/federated-evaluation/tasks_torch.yaml
defaults : plan/defaults/tasks_torch.yaml

compression_pipeline :
defaults : plan/defaults/compression_pipeline.yaml
7 changes: 6 additions & 1 deletion openfl-workspace/workspace/plan/defaults/assigner.yaml
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
template : openfl.component.RandomGroupedAssigner
template : openfl.component.ModeBasedAssigner
settings :
task_groups :
- name : train_and_validate
Expand All @@ -7,3 +7,8 @@ settings :
- aggregated_model_validation
- train
- locally_tuned_model_validation
- name : evaluate
percentage : 1.0
tasks :
- aggregated_model_validation
mode: train_and_validate

This file was deleted.

This file was deleted.

1 change: 1 addition & 0 deletions openfl/component/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from openfl.component.aggregator.aggregator import Aggregator
from openfl.component.assigner.assigner import Assigner
from openfl.component.assigner.random_grouped_assigner import RandomGroupedAssigner
from openfl.component.assigner.mode_based_assigner import ModeBasedAssigner
from openfl.component.assigner.static_grouped_assigner import StaticGroupedAssigner
from openfl.component.collaborator.collaborator import Collaborator
from openfl.component.straggler_handling_functions.cutoff_time_based_straggler_handling import (
Expand Down
1 change: 1 addition & 0 deletions openfl/component/assigner/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@
from openfl.component.assigner.assigner import Assigner
from openfl.component.assigner.random_grouped_assigner import RandomGroupedAssigner
from openfl.component.assigner.static_grouped_assigner import StaticGroupedAssigner
from openfl.component.assigner.mode_based_assigner import ModeBasedAssigner
64 changes: 64 additions & 0 deletions openfl/component/assigner/mode_based_assigner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


"""Mode based assigner module."""

import numpy as np

from openfl.component.assigner.random_grouped_assigner import RandomGroupedAssigner


class ModeBasedAssigner(RandomGroupedAssigner):
r"""The task assigner maintains a list of tasks.
Also it decides the policy for which collaborator should run those tasks
There may be many types of policies implemented, but a natural place to
start is with a:
- ModeBasedAssigner :
Given a set of task groups and mode it filters the task groups based
on mode. It futher enforces checks for specific modes.
Post filtering it deletgates the task assignment to RandomGroupedAssigner.
Attributes:
task_groups* (list of object): Task groups to assign.
mode* (str): Mode to determine task assignments.
.. note::
\* - Plan setting.
"""

def __init__(self, task_groups, mode, **kwargs):
"""Initializes the ModeBasedAssigner.
Args:
task_groups (list of object): Task groups to assign.
mode (str): Mode to determine task assignments.
**kwargs: Additional keyword arguments.
"""
self.task_groups = task_groups
self.mode = mode
super().__init__(task_groups=task_groups, **kwargs)

def define_task_assignments(self):
"""Define task assignments for each round and collaborator.
This method filters tasks for the
collaborators for each round based on the mode.
Args:
None
Returns:
None
"""
self.task_groups = [
group for group in self.task_groups
if group["name"] == self.mode
]
if self.mode == "evaluate" :
assert (
self.rounds == 1
), "Number of rounds should be 1 for evaluate mode"
super().define_task_assignments()
73 changes: 73 additions & 0 deletions tests/openfl/component/assigner/test_mode_based_assigner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import pytest
from openfl.component.assigner.mode_based_assigner import ModeBasedAssigner

@pytest.fixture
def sample_task_groups():
return [
{"name": "train", "tasks": ["task1", "task2"]},
{"name": "evaluate", "tasks": ["task3"]},
{"name": "validate", "tasks": ["task4"]}
]

def test_init_with_valid_mode():
"""Test initialization with valid mode and task groups."""
task_groups = [{"name": "train", "tasks": ["task1"]}]
assigner = ModeBasedAssigner(task_groups=task_groups, mode="train")
assert assigner.mode == "train"
assert assigner.task_groups == task_groups

def test_define_task_assignments_train_mode(sample_task_groups):
"""Test task assignments filtering for train mode."""
assigner = ModeBasedAssigner(
task_groups=sample_task_groups,
mode="train",
rounds=3
)
assigner.define_task_assignments()
assert len(assigner.task_groups) == 1
assert assigner.task_groups[0]["name"] == "train"

def test_define_task_assignments_evaluate_mode(sample_task_groups):
"""Test task assignments filtering for evaluate mode with rounds=1."""
assigner = ModeBasedAssigner(
task_groups=sample_task_groups,
mode="evaluate",
rounds=1
)
assigner.define_task_assignments()
assert len(assigner.task_groups) == 1
assert assigner.task_groups[0]["name"] == "evaluate"

def test_evaluate_mode_with_invalid_rounds(sample_task_groups):
"""Test that evaluate mode raises error when rounds > 1."""
assigner = ModeBasedAssigner(
task_groups=sample_task_groups,
mode="evaluate",
rounds=2
)
with pytest.raises(AssertionError):
assigner.define_task_assignments()

def test_empty_task_groups_after_filtering():
"""Test behavior when no task groups match the specified mode."""
task_groups = [{"name": "train", "tasks": ["task1"]}]
assigner = ModeBasedAssigner(
task_groups=task_groups,
mode="non_existent_mode"
)
assigner.define_task_assignments()
assert len(assigner.task_groups) == 0

def test_multiple_matching_task_groups():
"""Test behavior when multiple task groups match the mode."""
task_groups = [
{"name": "train", "tasks": ["task1"]},
{"name": "train", "tasks": ["task2"]}
]
assigner = ModeBasedAssigner(
task_groups=task_groups,
mode="train"
)
assigner.define_task_assignments()
assert len(assigner.task_groups) == 2
assert all(group["name"] == "train" for group in assigner.task_groups)

0 comments on commit 6a04db5

Please sign in to comment.