Skip to content

semantic-systems/zero-shot-re

Repository files navigation

Code of ESWC 2024 submission "Incorporating Type Information Into Zero-Shot Relation Extraction"

Steps to reproduce

  1. Unpack the following files:

  2. Run the following command to train the model for each dataset:

    python3 src/train.py ...
    
  3. Evaluate on each seed of each dataset by using the following command:

    python3 src/evaluate.py ...
    

Functions

Arguments for train.py:

Argument Type Default Value Description
--dataset_name str "fewrel/unseen_5" Specifies the name of the dataset. This executes the training for all seeds as specified by the --seeds parameter.
--model_type str "bert-base-cased" Specifies the type of model to be used.
--batch_size int 24 Sets the batch size for training.
--num_workers int 2 Number of worker processes for data loading.
--accumulate_grad_batches int 2 Accumulates gradients over a specified number of batches.
--lr float 5e-5 Learning rate for optimization.
--seeds int, List [0, 1, 2, 3, 4] List of seeds of the dataset to train on.
--include_descriptions store_true False Includes descriptions in the textual representation if this flag is present.
--include_types store_true False Includes types in the textual if this flag is present.

Arguments for evaluate.py:

Argument Type Default Value Required Description
--model_checkpoint str - Yes Specifies the path to the model checkpoint.
--dataset_name str "fewrel/unseen_5_seed_0" No Specifies the name of the dataset with the corresponding seed.
--model_type str "bert-base-cased" No Specifies the type of model to be used.
--batch_size int 24 No Sets the batch size for training.
--num_workers int 2 No Number of worker processes for data loading.
--accumulate_grad_batches int 1 No Accumulates gradients over a specified number of batches.
--other_properties int 5 No Specifies the value for some other properties.
--hard_other_properties int 0 No Specifies the value for some other hard properties.
--include_descriptions store_true False No Includes descriptions in the textual representation if this flag is present.
--include_types store_true False No Includes types in the textual if this flag is present.
--use_predicted_candidates store_true False No Uses predicted candidates if this flag is present.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages