-
Unpack the following files:
-
Run the following command to train the model for each dataset:
python3 src/train.py ...
-
Evaluate on each seed of each dataset by using the following command:
python3 src/evaluate.py ...
Arguments for train.py
:
Argument | Type | Default Value | Description |
---|---|---|---|
--dataset_name | str | "fewrel/unseen_5" | Specifies the name of the dataset. This executes the training for all seeds as specified by the --seeds parameter. |
--model_type | str | "bert-base-cased" | Specifies the type of model to be used. |
--batch_size | int | 24 | Sets the batch size for training. |
--num_workers | int | 2 | Number of worker processes for data loading. |
--accumulate_grad_batches | int | 2 | Accumulates gradients over a specified number of batches. |
--lr | float | 5e-5 | Learning rate for optimization. |
--seeds | int, List | [0, 1, 2, 3, 4] | List of seeds of the dataset to train on. |
--include_descriptions | store_true | False | Includes descriptions in the textual representation if this flag is present. |
--include_types | store_true | False | Includes types in the textual if this flag is present. |
Arguments for evaluate.py
:
Argument | Type | Default Value | Required | Description |
---|---|---|---|---|
--model_checkpoint | str | - | Yes | Specifies the path to the model checkpoint. |
--dataset_name | str | "fewrel/unseen_5_seed_0" | No | Specifies the name of the dataset with the corresponding seed. |
--model_type | str | "bert-base-cased" | No | Specifies the type of model to be used. |
--batch_size | int | 24 | No | Sets the batch size for training. |
--num_workers | int | 2 | No | Number of worker processes for data loading. |
--accumulate_grad_batches | int | 1 | No | Accumulates gradients over a specified number of batches. |
--other_properties | int | 5 | No | Specifies the value for some other properties. |
--hard_other_properties | int | 0 | No | Specifies the value for some other hard properties. |
--include_descriptions | store_true | False | No | Includes descriptions in the textual representation if this flag is present. |
--include_types | store_true | False | No | Includes types in the textual if this flag is present. |
--use_predicted_candidates | store_true | False | No | Uses predicted candidates if this flag is present. |