Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

i2: support multiple categorical covariates #4

Merged
merged 10 commits into from
Oct 3, 2024
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@ src/stan/**/*.exe
src/stan/**/*.EXE
inst/doc
.idea
*.png
106 changes: 56 additions & 50 deletions R/scova.R
Original file line number Diff line number Diff line change
Expand Up @@ -63,41 +63,13 @@ scova <- R6::R6Class(
# Identify columns with no variance and remove them
variance_per_column <- apply(mm, 2, var)
relevant_columns <- which(variance_per_column != 0)
mm_reduced <- mm[, relevant_columns]
mm_reduced <- mm[, relevant_columns, drop = FALSE]
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

just in case this becomes a 1 column matrix, stop it from being converted to a vector with colnames removed

private$design_matrix <- mm_reduced
},
build_covariate_lookup_table = function() {
# Extract column names
col_names <- colnames(private$design_matrix)

# Split column names based on the ':' delimiter
split_data <- stringr::str_split(col_names, ":", simplify = TRUE)

# Convert the matrix to a data.table
dt <- data.table::as.data.table(split_data)

# Set the new column names
data.table::setnames(dt, private$all_formula_vars)

for (col_name in names(dt)) {
# Find the matching formula variable for current column
matching_formula_var <- private$all_formula_vars[which(startsWith(col_name, private$all_formula_vars))]
if (length(matching_formula_var) > 0) {
pattern_to_remove <- paste0("^", matching_formula_var)
dt[, (col_name) := stringr::str_remove_all(get(col_name), pattern_to_remove)]
}
}

# Declare variables to suppress notes when compiling package
# https://github.com/Rdatatable/data.table/issues/850#issuecomment-259466153
p <- NULL

# .I is a special symbol in data.table for row number
dt[, p := .I]

# Reorder columns to have 'i' first
data.table::setcolorder(dt, "p")
private$covariate_lookup_table <- dt
private$covariate_lookup_table <- build_covariate_lookup_table(private$data,
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

moved logic out to own function, mostly for ease of unit testing (but also could be re-used if/when we add CT model)

private$design_matrix,
private$all_formula_vars)
},
recover_covariate_names = function(dt) {
# Declare variables to suppress notes when compiling package
Expand All @@ -110,35 +82,46 @@ scova <- R6::R6Class(

dt_out <- dt[dt_titre_lookup, on = "k"][, `:=`(k = NULL)]
if ("p" %in% colnames(dt)) {
dt_out <- dt_out[private$covariate_lookup_table, on = "p"][, `:=`(p = NULL)]
dt_out <- dt_out[private$covariate_lookup_table, on = "p", nomatch = NULL][, `:=`(p = NULL)]
}
dt_out
},
summarise_pop_fit = function(time_range,
summarise,
n_draws) {

has_covariates <- length(private$all_formula_vars) > 0

# Declare variables to suppress notes when compiling package
# https://github.com/Rdatatable/data.table/issues/850#issuecomment-259466153
t0_pop <- tp_pop <- ts_pop <- m1_pop <- m2_pop <- m3_pop <- NULL
beta_t0 <- beta_tp <- beta_ts <- beta_m1 <- beta_m2 <- beta_m3 <- NULL
k <- p <- .draw <- t_id <- mu <- NULL

params <- c("t0_pop[k]", "tp_pop[k]", "ts_pop[k]",
"m1_pop[k]", "m2_pop[k]", "m3_pop[k]")
if (has_covariates) {
params <- c(params, "beta_t0[p]", "beta_tp[p]", "beta_ts[p]",
"beta_m1[p]", "beta_m2[p]", "beta_m3[p]")
}

params_proc <- rlang::parse_exprs(params)

dt_samples_wide <- tidybayes::spread_draws(
private$fitted,
t0_pop[k], tp_pop[k], ts_pop[k],
m1_pop[k], m2_pop[k], m3_pop[k],
beta_t0[p], beta_tp[p], beta_ts[p],
beta_m1[p], beta_m2[p], beta_m3[p]) |>
private$fitted, !!!params_proc) |>
data.table()

dt_samples_wide <- dt_samples_wide[.draw %in% 1:n_draws]

dt_samples_wide[, `:=`(.chain = NULL, .iteration = NULL)]

if (!has_covariates) {
# there are no covariates, so add dummy column
# that will be removed after processing
dt_samples_wide$p <- 1
}

data.table::setcolorder(dt_samples_wide, c("k", "p", ".draw"))

if (length(private$all_formula_vars) > 0) {
if (has_covariates) {
logger::log_info("Adjusting by regression coefficients")
dt_samples_wide <- private$adjust_parameters(dt_samples_wide)
}
Expand All @@ -165,6 +148,11 @@ scova <- R6::R6Class(
}

data.table::setcolorder(dt_out, c("t", "p", "k"))

if (!has_covariates) {
dt_out[, p:= NULL]
}
dt_out
},
prepare_stan_data = function() {
stan_id <- titre <- censored <- titre_type_num <- titre_type <- obs_id <- t_since_last_exp <- t_since_min_date <- NULL
Expand Down Expand Up @@ -228,7 +216,8 @@ scova <- R6::R6Class(
#' for required columns: \code{vignette("data", package = "epikinetics")}.
#' @param file_path Optional file path to model inputs in CSV format. One of data or file must be provided.
#' @param priors Object of type \link[epikinetics]{scova_priors}. Default scova_priors().
#' @param covariate_formula Formula specifying hierarchical structure of model. Default ~0.
#' @param covariate_formula Formula specifying linear regression model. Note all variables in the formula
#' will be treated as categorical variables. Default ~0.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So, I might be missing something, but in principle there is no need to treat covariates as categorical. There is certainly a need for continuous variables for the Ct version of the model and I can imagine others wanting continuous variables for this model possibly. It shouldn't change the overall regression parameters. It might make the covariate name recovery a bit more strange, and perhaps the "bespoke" code I wrote for this model might need some tweaking. But we should aim to include continuous variables at some point too.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah, totally agree that we should accept these in principle, will just be a bit fiddly to get that working so figured this was a reasonable intermediate step. Will add an issue 👍

#' @param preds_sd Standard deviation of predictor coefficients. Default 0.25.
#' @param time_type One of 'relative' or 'absolute'. Default 'relative'.
initialize = function(priors = scova_priors(),
Expand Down Expand Up @@ -296,14 +285,23 @@ scova <- R6::R6Class(
extract_population_parameters = function(n_draws = 2500,
human_readable_covariates = TRUE) {
private$check_fitted()
params <- c("t0_pop[k]", "tp_pop[k]", "ts_pop[k]", "m1_pop[k]", "m2_pop[k]",
"m3_pop[k]", "beta_t0[p]", "beta_tp[p]", "beta_ts[p]", "beta_m1[p]",
"beta_m2[p]", "beta_m3[p]")
has_covariates <- length(private$all_formula_vars) > 0

params <- c("t0_pop[k]", "tp_pop[k]", "ts_pop[k]", "m1_pop[k]", "m2_pop[k]", "m3_pop[k]")

if (has_covariates) {
params <- c(params, "beta_t0[p]", "beta_tp[p]", "beta_ts[p]", "beta_m1[p]", "beta_m2[p]", "beta_m3[p]")
}

logger::log_info("Extracting parameters")
dt_out <- private$extract_parameters(params, n_draws)

data.table::setcolorder(dt_out, c("k", "p", ".draw"))
if (has_covariates){
data.table::setcolorder(dt_out, c("p", "k", ".draw"))
} else {
data.table::setcolorder(dt_out, c("k", ".draw"))
}

data.table::setnames(dt_out, ".draw", "draw")

if (length(private$all_formula_vars) > 0) {
Expand Down Expand Up @@ -338,6 +336,7 @@ scova <- R6::R6Class(
dt_out <- private$extract_parameters(params, n_draws)

data.table::setcolorder(dt_out, c("n", "k", ".draw"))

data.table::setnames(dt_out, c("n", ".draw"), c("stan_id", "draw"))

if (human_readable_covariates) {
Expand Down Expand Up @@ -408,14 +407,20 @@ scova <- R6::R6Class(
human_readable_covariates = FALSE)

logger::log_info("Calculating peak and switch titre values")

by <- c("k", "draw")
if ("p" %in% colnames(dt_peak_switch)) {
by <- c("p", by)
}

dt_peak_switch[, `:=`(
mu_0 = scova_simulate_trajectory(
0, t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop),
mu_p = scova_simulate_trajectory(
tp_pop, t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop),
mu_s = scova_simulate_trajectory(
ts_pop, t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop)),
by = c("p", "k", "draw")]
by = by]

logger::log_info("Recovering covariate names")
dt_peak_switch <- private$recover_covariate_names(dt_peak_switch)
Expand Down Expand Up @@ -482,7 +487,7 @@ scova <- R6::R6Class(
dt_params_ind_traj <- scova_simulate_trajectories(dt_params_ind_trim)

dt_params_ind_traj <- data.table::setDT(convert_log_scale_inverse_cpp(
dt_params_ind_traj, vars_to_transform = "mu"))
dt_params_ind_traj, vars_to_transform = "mu"))

logger::log_info("Recovering covariate names")
dt_params_ind_traj <- private$recover_covariate_names(dt_params_ind_traj)
Expand All @@ -499,18 +504,19 @@ scova <- R6::R6Class(
by = c(private$all_formula_vars, "stan_id", "titre_type")]

if (summarise) {
logger::log_info("Summarising into population quantiles")
logger::log_info("Resampling")
dt_out <- dt_out[
!is.nan(mu), .(pop_mu_sum = mean(mosaic::resample(mu))),
by = c("calendar_date", "draw", "titre_type")]

logger::log_info("Summarising into population quantiles")
dt_out <- summarise_draws(
dt_out,
column_name = "pop_mu_sum",
by = c("calendar_date", "titre_type"))
}

dt_out[, time_shift:= time_shift]
dt_out[, time_shift := time_shift]
}
)
)
39 changes: 33 additions & 6 deletions R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@ convert_log_scale <- function(
simplify_limits = TRUE) {

dt_out <- data.table::copy(dt_in)
for(var in vars_to_transform) {
if(simplify_limits == TRUE) {
for (var in vars_to_transform) {
if (simplify_limits == TRUE) {
dt_out[get(var) > 2560, (var) := 2560]
}
dt_out[, (var) := log2(get(var)/5)]
dt_out[, (var) := log2(get(var) / 5)]
}
return(dt_out)
}
Expand All @@ -23,9 +23,9 @@ convert_log_scale <- function(
#' @export
convert_log_scale_inverse <- function(dt_in, vars_to_transform) {
dt_out <- data.table::copy(dt_in)
for(var in vars_to_transform) {
for (var in vars_to_transform) {
# Reverse the log2 transformation and multiplication by 5.
dt_out[, (var) := 5*2^(get(var))]
dt_out[, (var) := 5 * 2^(get(var))]
}
dt_out
}
Expand All @@ -40,6 +40,33 @@ summarise_draws <- function(dt_in, column_name, by = by) {
lo = stats::quantile(get(column_name), 0.025),
hi = stats::quantile(get(column_name), 0.975)
),
by = by
by = by
]
}

build_covariate_lookup_table <- function(data, design_matrix, all_formula_vars) {

if (length(all_formula_vars) == 0) {
return(NULL)
}
p_names <- colnames(design_matrix)
p_names <- data.table::data.table(p_name = p_names, p = seq_along(p_names))

factors <- lapply(all_formula_vars, function(v) { levels(as.factor(as.data.frame(data)[, v])) })
names(factors) <- all_formula_vars
combinations <- expand.grid(factors)

for (i in 1:nrow(combinations)) {
combinations[i, "p_name"] <- paste0(all_formula_vars, as.matrix(combinations[i, all_formula_vars]), collapse = ":")
}

dt_out <- data.table::setDT(combinations)[p_names, on = "p_name"]

for (f in names(factors)) {
re <- paste0("(?<=", f, ").+?(?=$|:)")
dt_out[, f] <- dt_out[, stringr::str_extract(p_name, re)]
}

dt_out[, p_name := NULL]
dt_out
}
3 changes: 2 additions & 1 deletion man/scova.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading
Loading