-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support NextN (MTP) speculative decoding for DeepSeek-V3/R1 (#3582)
- Loading branch information
Showing
7 changed files
with
437 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
# Copyright 2023-2024 SGLang Team | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""Inference-only DeepSeek NextN Speculative Decoding.""" | ||
from typing import Iterable, Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import PretrainedConfig | ||
from vllm import _custom_ops as ops | ||
|
||
from sglang.srt.layers.layernorm import RMSNorm | ||
from sglang.srt.layers.linear import ReplicatedLinear | ||
from sglang.srt.layers.logits_processor import LogitsProcessor | ||
from sglang.srt.layers.moe.ep_moe.layer import EPMoE | ||
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE | ||
from sglang.srt.layers.quantization.base_config import QuantizationConfig | ||
from sglang.srt.layers.quantization.fp8_utils import ( | ||
block_quant_to_tensor_quant, | ||
normalize_e4m3fn_to_e4m3fnuz, | ||
) | ||
from sglang.srt.layers.vocab_parallel_embedding import ( | ||
ParallelLMHead, | ||
VocabParallelEmbedding, | ||
) | ||
from sglang.srt.managers.schedule_batch import global_server_args_dict | ||
from sglang.srt.model_executor.forward_batch_info import ForwardBatch | ||
from sglang.srt.model_loader.weight_utils import default_weight_loader | ||
from sglang.srt.models.deepseek_v2 import DeepseekV2DecoderLayer, DeepseekV3ForCausalLM | ||
from sglang.srt.utils import is_hip | ||
|
||
is_hip_ = is_hip() | ||
|
||
|
||
class DeepseekModelNextN(nn.Module): | ||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
) -> None: | ||
super().__init__() | ||
self.vocab_size = config.vocab_size | ||
|
||
self.embed_tokens = VocabParallelEmbedding( | ||
config.vocab_size, | ||
config.hidden_size, | ||
enable_tp=not global_server_args_dict["enable_dp_attention"], | ||
) | ||
|
||
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | ||
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | ||
|
||
self.eh_proj = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=False) | ||
|
||
self.decoder = DeepseekV2DecoderLayer( | ||
config, 0, quant_config=quant_config, is_nextn=True | ||
) | ||
|
||
self.shared_head = nn.Module() | ||
self.shared_head.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
forward_batch: ForwardBatch, | ||
input_embeds: torch.Tensor = None, | ||
) -> torch.Tensor: | ||
if input_embeds is None: | ||
hidden_states = self.embed_tokens(input_ids) | ||
else: | ||
hidden_states = input_embeds | ||
|
||
hidden_states = self.eh_proj( | ||
torch.cat( | ||
( | ||
self.enorm(hidden_states), | ||
self.hnorm(forward_batch.spec_info.hidden_states), | ||
), | ||
dim=-1, | ||
) | ||
) | ||
|
||
residual = None | ||
hidden_states, residual = self.decoder( | ||
positions, hidden_states, forward_batch, residual | ||
) | ||
|
||
if not forward_batch.forward_mode.is_idle(): | ||
hidden_states, _ = self.shared_head.norm(hidden_states, residual) | ||
return hidden_states | ||
|
||
|
||
class DeepseekV3ForCausalLMNextN(DeepseekV3ForCausalLM): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
) -> None: | ||
nn.Module.__init__(self) | ||
self.config = config | ||
self.quant_config = quant_config | ||
|
||
self.model = DeepseekModelNextN(config, quant_config) | ||
|
||
if global_server_args_dict["enable_dp_attention"]: | ||
self.model.shared_head.head = ReplicatedLinear( | ||
config.hidden_size, | ||
config.vocab_size, | ||
bias=False, | ||
) | ||
self.logits_processor = LogitsProcessor(config, skip_all_gather=True) | ||
else: | ||
self.model.shared_head.head = ParallelLMHead( | ||
config.vocab_size, | ||
config.hidden_size, | ||
quant_config=quant_config, | ||
) | ||
self.logits_processor = LogitsProcessor(config) | ||
|
||
@torch.no_grad() | ||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
forward_batch: ForwardBatch, | ||
) -> torch.Tensor: | ||
hidden_states = self.model(input_ids, positions, forward_batch) | ||
return self.logits_processor( | ||
input_ids, hidden_states, self.model.shared_head.head, forward_batch | ||
) | ||
|
||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): | ||
if hasattr(self.config, "num_nextn_predict_layers"): | ||
num_nextn_layers = self.config.num_nextn_predict_layers | ||
assert num_nextn_layers == 1, "Only 1 nextn layer is supportted" | ||
assert num_nextn_layers == self.config.num_hidden_layers | ||
else: | ||
raise ValueError("num_nextn_predict_layers is not in the config") | ||
|
||
stacked_params_mapping = [ | ||
# (param_name, shard_name, shard_id) | ||
("gate_up_proj", "gate_proj", 0), | ||
("gate_up_proj", "up_proj", 1), | ||
] | ||
|
||
# Params for weights, fp8 weight scales, fp8 activation scales | ||
# (param_name, weight_name, expert_id, shard_id) | ||
MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE | ||
expert_params_mapping = MoEImpl.make_expert_params_mapping( | ||
ckpt_gate_proj_name="gate_proj", | ||
ckpt_down_proj_name="down_proj", | ||
ckpt_up_proj_name="up_proj", | ||
num_experts=self.config.n_routed_experts, | ||
) | ||
|
||
nextn_layer_prefix = "model.layers.0" | ||
nextn_spec_weight_names = [ | ||
"shared_head.head", | ||
"shared_head.norm", | ||
"eh_proj", | ||
"embed_tokens", | ||
"enorm", | ||
"hnorm", | ||
] | ||
|
||
params_dict = dict(self.named_parameters()) | ||
for name, loaded_weight in weights: | ||
if not name.startswith(nextn_layer_prefix): | ||
continue | ||
else: | ||
is_decoder = True | ||
# For nextn specific weights | ||
for weight_name in nextn_spec_weight_names: | ||
if weight_name in name: | ||
name = name.replace(nextn_layer_prefix, "model") | ||
is_decoder = False | ||
break | ||
# For decoder layer weights | ||
if is_decoder: | ||
name = name.replace(nextn_layer_prefix, "model.decoder") | ||
|
||
if "rotary_emb.inv_freq" in name: | ||
continue | ||
for param_name, weight_name, shard_id in stacked_params_mapping: | ||
# Skip non-stacked layers and experts (experts handled below). | ||
if weight_name not in name: | ||
continue | ||
# We have mlp.experts[0].gate_proj in the checkpoint. | ||
# Since we handle the experts below in expert_params_mapping, | ||
# we need to skip here BEFORE we update the name, otherwise | ||
# name will be updated to mlp.experts[0].gate_up_proj, which | ||
# will then be updated below in expert_params_mapping | ||
# for mlp.experts[0].gate_gate_up_proj, which breaks load. | ||
if ("mlp.experts." in name) and name not in params_dict: | ||
continue | ||
name = name.replace(weight_name, param_name) | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader(param, loaded_weight, shard_id) | ||
break | ||
else: | ||
for mapping in expert_params_mapping: | ||
param_name, weight_name, expert_id, shard_id = mapping | ||
if weight_name not in name: | ||
continue | ||
name = name.replace(weight_name, param_name) | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader( | ||
param, | ||
loaded_weight, | ||
name, | ||
shard_id=shard_id, | ||
expert_id=expert_id, | ||
) | ||
break | ||
else: | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
|
||
param = params_dict[name] | ||
weight_loader = getattr( | ||
param, "weight_loader", default_weight_loader | ||
) | ||
weight_loader(param, loaded_weight) | ||
|
||
if not global_server_args_dict["disable_mla"]: | ||
self_attn = self.model.decoder.self_attn | ||
if hasattr(self_attn.kv_b_proj, "qweight"): | ||
# AWQ compatible | ||
w = ops.awq_dequantize( | ||
self_attn.kv_b_proj.qweight, | ||
self_attn.kv_b_proj.scales, | ||
self_attn.kv_b_proj.qzeros, | ||
0, | ||
0, | ||
0, | ||
).T | ||
else: | ||
w = self_attn.kv_b_proj.weight | ||
# NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`. | ||
# This may affect the accuracy of fp8 model. | ||
if hasattr(self.quant_config, "weight_block_size") and w.dtype in ( | ||
torch.float8_e4m3fn, | ||
torch.float8_e4m3fnuz, | ||
): | ||
weight_block_size = self.quant_config.weight_block_size | ||
if weight_block_size is not None: | ||
assert hasattr(self_attn.kv_b_proj, "weight_scale_inv") | ||
if is_hip_: | ||
weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz( | ||
weight=w, | ||
weight_scale=self_attn.kv_b_proj.weight_scale_inv, | ||
input_scale=None, | ||
) | ||
else: | ||
weight = w | ||
weight_scale = self_attn.kv_b_proj.weight_scale_inv | ||
|
||
w, scale = block_quant_to_tensor_quant( | ||
weight, weight_scale, weight_block_size | ||
) | ||
self_attn.w_scale = scale | ||
w_kc, w_vc = w.unflatten( | ||
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim) | ||
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1) | ||
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2) | ||
self_attn.w_vc = w_vc.contiguous().transpose(1, 2) | ||
if ( | ||
hasattr(self_attn.kv_b_proj, "weight_scale") | ||
and self_attn.w_scale is None | ||
): | ||
self_attn.w_scale = self_attn.kv_b_proj.weight_scale | ||
if is_hip_: | ||
self_attn.w_scale *= 2.0 | ||
|
||
|
||
EntryClass = [DeepseekV3ForCausalLMNextN] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.