Dataset for "One step surgical scene restoration for robot assisted minimally invasive surgery" method applied on Knee Arthroscopy. The model learns image restoration methods namely denoise, deblur,and color corrections.
For other minimally invasive surgical (MIS) procedures or endoscopic images e.g. wireless capsule endoscopy, The model can be pre-trained on the following published dataset and can be used
fine-tuned on small endoscopic images.
Directory Structure
dataset/image: Real world endoscopic surgical images. [Updating]
dataset/synthetic_gt: Synthetic rendered surgical images.
dataset/clean: Clean restored denoised deblurred and color corrected surgical images.
Real world image Restored images
import os
import sys
import numpy as np
import cv2
import csv
import os
rd_dir='./PATH_TO_READ_DIRECTORY/'
save_dir='./PATH_TO_SAVE_DIRECTORY/'
def make_dir_(dir_name):
if not os.path.exists(dir_name):
os.makedirs(dir_name)
return True
else:
return False
def resize_images():
file_list= os.listdir(rd_dir)
for c in range(len(file_list)):
name=file_list[c]
I = cv2.imread(rd_dir+name) # read the image
# resize either 256x256 or 384x384
#image = cv2.resize(I , (256, 256))
image = cv2.resize(I , (384, 384))
cv2.imwrite(save_dir+name, image)
Ali, Shahnewaz, Yaqub Jonmohamadi, Davide Fontanarosa, Ross Crawford, and Ajay K. Pandey. "One step surgical scene restoration for robot assisted minimally invasive surgery." Scientific Reports 13, no. 1 (2023): 3127.
https://doi.org/10.1038/s41598-022-26647-4