-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a0bae41
commit 0766c1b
Showing
2 changed files
with
18 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
17 changes: 17 additions & 0 deletions
17
posts/2024-10-16-singular-learning-relative-information-and-the-dual-numbers.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
--- | ||
date: 2024-10-16 | ||
excerpts: 2 | ||
--- | ||
|
||
# Singular learning, relative information and the dual numbers | ||
|
||
## Abstract | ||
|
||
Relative information (Kullback-Leibler divergence) is a fundamental concept in statistics, machine learning and information theory. In the first half of the talk, I will define conditional relative information, list its axiomatic properties, and describe how it is used in machine learning. For example, according to Sumio Watanabe's Singular Learning Theory, the generalization error of a learning algorithm depends on the structure of algebraic geometric singularities of relative information. In the second half of the talk, I will define the rig category Info of random variables and their conditional maps, as well as the rig category R(e) of dual numbers. Relative information can then be constructed, up to a scalar multiple, via rig monoidal functors from Info to R(e). If time permits, I may discuss how this construction relates to the information cohomology of Baudot, Bennequin and Vigneaux, and to the operad derivations of Bradley. | ||
|
||
## Details | ||
[IPAM Theory and Practice of Deep Learning Workshop](https://www.ipam.ucla.edu/abstract/?tid=20677&pcode=MOIWS2) | ||
|
||
[Video] | ||
|
||
[Slides] |