Skip to content

shell-nlp/gpt_server

Repository files navigation

gpt_server logo

GPT Server

License Stars Forks Docker pulls CI Status issue resolution

本项目依托fastchat的基础能力来提供openai server的能力.

  1. 在此基础上完美适配了更多的模型优化了fastchat兼容较差的模型
  2. 支持了Function Calling (Tools) 能力(现阶段支持Qwen/ChatGLM,对Qwen支持更好)
  3. 重新适配了vllm对模型适配较差,导致解码内容和hf不对齐的问题。
  4. 支持了vllmLMDeployhf的加载方式
  5. 支持所有兼容sentence_transformers的语义向量模型(Embedding和Reranker)
  6. 支持了Infinity后端,推理速度大于onnx/tensorrt,支持动态组批
  7. 支持guided_decoding,强制模型按照Schema的要求进行JSON格式输出。
  8. Chat模板无角色限制,使其完美支持了LangGraph Agent框架
  9. 支持多模态大模型
  10. 降低了模型适配的难度和项目使用的难度(新模型的适配仅需修改低于5行代码),从而更容易的部署自己最新的模型。

(仓库初步构建中,构建过程中没有经过完善的回归测试,可能会发生已适配的模型不可用的Bug,欢迎提出改进或者适配模型的建议意见。)


特色

  1. 支持多种推理后端引擎,vLLM和LMDeploy,LMDeploy后端引擎,每秒处理的请求数是 vLLM 的 1.36 ~ 1.85 倍
  2. 支持了Infinity后端,推理速度大于onnx/tensorrt,支持动态组批
  3. 全球唯一完美支持Tools(Function Calling)功能的开源框架。兼容LangChainbind_toolsAgentExecutorwith_structured_output写法(目前支持Qwen系列、GLM系列)
  4. 全球唯一扩展了openai库,实现Reranker模型。(代码样例见gpt_server/tests/test_openai_rerank.py)
  5. 支持多模态大模型
  6. 与FastChat相同的分布式架构

更新信息

2024-10-15 支持了 Qwen2-VL
2024-9-19  支持了 minicpmv 模型
2024-8-17  支持了 vllm/hf 后端的 lora 部署
2024-8-14  支持了 InternVL2 系列多模态模型
2024-7-28  支持embedding/reranker 的动态组批加速(infinity后端, 比onnx/tensorrt更快)
2024-7-19  支持了多模态模型 glm-4v-gb 的LMDeploy PyTorch后端
2024-6-22  支持了 Qwen系列、ChatGLM系列 function call (tools) 能力
2024-6-12  支持了 qwen-2
2024-6-5   支持了 Yinka、zpoint_large_embedding_zh 嵌入模型
2024-6-5   支持了 glm4-9b系列(hf和vllm)
2024-4-27  支持了 LMDeploy 加速推理后端
2024-4-20  支持了 llama-3
2024-4-13  支持了 deepseek
2024-4-4   支持了 embedding模型 acge_text_embedding
2024-3-9   支持了 reranker 模型 ( bge-reranker,bce-reranker-base_v1)
2024-3-3   支持了 internlm-1.0 ,internlm-2.0
2024-3-2   支持了 qwen-1.5 0.5B, 1.8B, 4B, 7B, 14B, and 72B
2024-2-4   支持了 vllm 实现
2024-1-6   支持了 Yi-34B
2023-12-31 支持了 qwen-7b, qwen-14b
2023-12-30 支持了 all-embedding(理论上支持所有的词嵌入模型)
2023-12-24 支持了 chatglm3-6b 

路线

  • 支持HF后端
  • 支持vLLM后端
  • 支持LMDeploy后端
  • 支持 function call 功能 (tools)(Qwen系列、ChatGLM系列已经支持,后面有需求再继续扩展)
  • 支持多模态模型(初步支持glm-4v,其它模型后续慢慢支持)
  • 支持Embedding模型动态组批(实现方式:infinity后端)
  • 支持Reranker模型动态组批(实现方式:infinity后端)
  • 可视化启动界面
  • 支持 pip install 方式进行安装
  • 内置部分 tools (image_gen,code_interpreter,weather等)
  • 并行的function call功能(tools)

启用方式

Python启动

1. 配置python环境

# 1. 创建conda 环境
conda create -n gpt_server python=3.10

# 2. 激活conda 环境
conda activate gpt_server

# 3. 安装仓库(一定要使用 install.sh 安装,否则无法解决依赖冲突)
sh install.sh

2. 修改启动配置文件

修改模型后端方式(vllm,lmdeploy等)

config.yaml中:

work_mode: vllm  # vllm hf lmdeploy-turbomind  lmdeploy-pytorch

修改embedding/reranker后端方式(embedding或embedding_infinity)

config.yaml中:

model_type: embedding_infinity # embedding 或 embedding_infinity  embedding_infinity后端速度远远大于 embedding

config.yaml

cd gpt_server/script
vim config.yaml
serve_args:  # openai 服务的 host 和 pot
  host: 0.0.0.0
  port: 8082
  controller_address: http://localhost:21001 # 控制器的ip地址
  # api_keys: 111,222  # 用来设置 openai 密钥

# controller
controller_args: # 控制器的配置参数
  host: 0.0.0.0
  port: 21001
  dispatch_method: shortest_queue # lottery、shortest_queue # 现有两种请求分发策略,随机(lottery) 和 最短队列(shortest_queue),最短队列方法更推荐。

# model worker
model_worker_args: # 模型的配置参数,这里port 不能设置,程序自动分配,并注册到 控制器中。
  host: 0.0.0.0
  controller_address: http://localhost:21001 # 将模型注册到 控制器的 地址

models:
  - chatglm4:  #自定义的模型名称
      alias: null # 别名     例如  gpt4,gpt3
      enable: true  # false true 控制是否启动模型worker
      model_config:
        model_name_or_path: /home/dev/model/THUDM/glm-4-9b-chat/
      model_type: chatglm  # qwen  yi internlm
      work_mode: vllm  # vllm hf lmdeploy-turbomind  lmdeploy-pytorch
      # lora:  # lora 配置
      #   test_lora: /home/dev/project/LLaMA-Factory/saves/Qwen1.5-14B-Chat/lora/train_2024-03-22-09-01-32/checkpoint-100
      device: gpu  # gpu / cpu
      workers:
      - gpus:
        # - 1
        - 0

# - gpus:  表示 模型使用 gpu[0,1],默认使用的 TP(张量并行)
#   - 0
#   - 1

# - gpus:  表示启动两个模型,模型副本1加载到 0卡, 模型副本2 加载到 1卡
#   - 0
# - gpus:
#   - 1


  - qwen:  #自定义的模型名称
      alias: gpt-4,gpt-3.5-turbo,gpt-3.5-turbo-16k # 别名     例如  gpt4,gpt3
      enable: true  # false true 控制是否启动模型worker
      model_config:
        model_name_or_path: /home/dev/model/qwen/Qwen1___5-14B-Chat/ 
        enable_prefix_caching: false
        dtype: auto
        max_model_len: 65536
      model_type: qwen  # qwen  yi internlm
      work_mode: vllm  # vllm hf lmdeploy-turbomind  lmdeploy-pytorch
      device: gpu  # gpu / cpu
      workers:
      - gpus:
        - 1
      # - gpus:
      #   - 3

  # Embedding 模型
  - bge-base-zh:
      alias: null # 别名   
      enable: true  # false true
      model_config:
        model_name_or_path: /home/dev/model/Xorbits/bge-base-zh-v1___5/
      model_type: embedding_infinity # embedding_infinity 
      work_mode: hf
      device: gpu  # gpu / cpu
      workers:
      - gpus:
        - 2
 # reranker 模型
  - bge-reranker-base:
      alias: null # 别名   
      enable: true  # false true  控制是否启动模型worker
      model_config:
        model_name_or_path: /home/dev/model/Xorbits/bge-reranker-base/
      model_type: embedding_infinity # embedding_infinity
      work_mode: hf
      device: gpu  # gpu / cpu
      workers:
      - gpus:
        - 2

3. 运行命令

start.sh

cd gpt_server/script
sh start.sh

4. 可视化UI方式启动服务(可选)

cd gpt_server/gpt_server/serving
streamlit run server_ui.py
4.1 Server UI界面:

server_ui_demo.png

支持的模型以及推理后端

推理速度: LMDeploy TurboMind > vllm > LMDeploy PyTorch > HF

LLM

Models / BackEnd model_type HF vllm LMDeploy TurboMind LMDeploy PyTorch
chatglm4-9b chatglm
chatglm3-6b chatglm ×
Qwen (7B, 14B, etc.)) qwen
Qwen-1.5 (0.5B--72B) qwen
Qwen-2 qwen
Qwen-2.5 qwen
Yi-34B yi
Internlm-1.0 internlm
Internlm-2.0 internlm
Deepseek deepseek
Llama-3 llama
Baichuan-2 baichuan
Models / BackEnd model_type HF vllm LMDeploy TurboMind LMDeploy PyTorch
glm-4v-9b chatglm × × ×
InternVL2 internvl2 × ×
MiniCPM-V-2_6 minicpmv × ×
Qwen2-VL qwen × ×

Embedding模型

原则上支持所有的Embedding/Rerank 模型

推理速度: Infinity >> HF

以下模型经过测试可放心使用:

Embedding/Rerank HF Infinity
bge-reranker
bce-reranker
bge-embedding
bce-embedding
puff
piccolo-base-zh-embedding
acge_text_embedding
Yinka
zpoint_large_embedding_zh
xiaobu-embedding
Conan-embedding-v1

目前 TencentBAC的 Conan-embedding-v1 C-MTEB榜单排行第一(MTEB: https://huggingface.co/spaces/mteb/leaderboard)

5. 使用 openai 库 进行调用

见 gpt_server/tests 目录 样例测试代码: https://github.com/shell-nlp/gpt_server/tree/main/tests

6. 使用Chat UI

cd gpt_server/gpt_server/serving
streamlit run chat_ui.py

Chat UI界面:

chat_ui_demo.png

Docker安装

0. 使用Docker Hub镜像

docker pull 506610466/gpt_server:latest # 如果拉取失败可尝试下面的方式


# 如果国内无法拉取docker镜像,可以尝试下面的国内镜像拉取的方式(不保证国内镜像源一直可用)
docker pull docker.rainbond.cc/506610466/gpt_server:latest 

1. 手动构建镜像(可选)

1.1 构建镜像

docker build --rm -f "Dockerfile" -t gpt_server:latest "." 

1.2 Docker Compose启动 (建议在项目里使用docker-compose启动)

docker-compose  -f "docker-compose.yml" up -d --build gpt_server

架构

gpt_server_archs.png

致谢

FastChat : https://github.com/lm-sys/FastChat

vLLM : https://github.com/vllm-project/vllm

LMDeploy https://github.com/InternLM/lmdeploy

infinityhttps://github.com/michaelfeil/infinity

与我联系(会邀请进入交流群)

wechat.png

Star History

Star History Chart

About

gpt_server是一个用于生产级部署LLMs或Embedding的开源框架。

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages