Skip to content

Latest commit

 

History

History
65 lines (37 loc) · 1.21 KB

README.md

File metadata and controls

65 lines (37 loc) · 1.21 KB

MultiHyperGNN

Official implementation of MultiHyperGNN

Running environment: Python 3.9 Pytorch 1.8.1 networkx 2.5 dgl 0.9.1 pandas 1.4.2 numpy, scipy

Dataset:

  1. Genes:

a. Input modes:

Expression: expr_in_muscle.csv, expr_in_whole_blood.csv

Graph: graph_in_muscle.csv, graph_in_whole_blood.csv

b. Output modes:

Expression: expr_out_lung.csv, expr_out_skin_not_sun_exposed.csv, expr_out_skin_sun_exposed.csv

Graph: graph_out_lung.csv, graph_out_skin_not_sun_exposed.csv, graph_out_skin_sun_exposed.csv

  1. Temperature:

a. Early morning:

Value: t1.csv

Graph: c1.csv

b. Late morning:

Value: t2.csv

Graph: c2.csv

c. Afternoon:

Value: t3.csv

Graph: c3.csv

d. Night:

Value: t4.csv

Graph: c4.csv

Train the model:

  1. To train the model, run: python trian.py.

a. Note that train.py is written specifically for Genes, to train on Temperature, please replace with the corresponding Temperature data in both train.py and test.py.

b. Trained model will be automatically saved as "model.pt".

c. To change model parameters, please directly modify the parameters of model() in both train.py and test.py.

d. To change training epochs, please change the value of "epochs" in train.py.

  1. To test the model, run: python test.py.