Skip to content

shi-yu-wang/MultiHyperGNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MultiHyperGNN

Official implementation of MultiHyperGNN

Running environment: Python 3.9 Pytorch 1.8.1 networkx 2.5 dgl 0.9.1 pandas 1.4.2 numpy, scipy

Dataset:

  1. Genes:

a. Input modes:

Expression: expr_in_muscle.csv, expr_in_whole_blood.csv

Graph: graph_in_muscle.csv, graph_in_whole_blood.csv

b. Output modes:

Expression: expr_out_lung.csv, expr_out_skin_not_sun_exposed.csv, expr_out_skin_sun_exposed.csv

Graph: graph_out_lung.csv, graph_out_skin_not_sun_exposed.csv, graph_out_skin_sun_exposed.csv

  1. Temperature:

a. Early morning:

Value: t1.csv

Graph: c1.csv

b. Late morning:

Value: t2.csv

Graph: c2.csv

c. Afternoon:

Value: t3.csv

Graph: c3.csv

d. Night:

Value: t4.csv

Graph: c4.csv

Train the model:

  1. To train the model, run: python trian.py.

a. Note that train.py is written specifically for Genes, to train on Temperature, please replace with the corresponding Temperature data in both train.py and test.py.

b. Trained model will be automatically saved as "model.pt".

c. To change model parameters, please directly modify the parameters of model() in both train.py and test.py.

d. To change training epochs, please change the value of "epochs" in train.py.

  1. To test the model, run: python test.py.

About

Official implementation of MultiHyperGNN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages