Data Science and Machine Learning Jupyter Notebooks
shortthirdman/DataScience-Jupyter-Notebooks is built on the following main stack:
- Python – Languages
- Docker – Virtual Machine Platforms & Containers
- GitHub Actions – Continuous Integration
- Jupyter – Data Science Notebooks
Full tech stack here
docker system prune --all --volumes --force
docker build --no-cache -f Dockerfile --progress=auto --compress --rm -t shortthirdman-org/bigdata-mlops-platform:latest .
docker buildx build --progress=auto --compress --rm -t shortthirdman-org/bigdata-mlops-platform:latest .
docker run -d -n mlops -p 8888:8888 --restart unless-stopped shortthirdman-org/bigdata-mlops-platform:latest
-
Create a Python virtual environment and activate
python -m venv dev
.\dev\Scripts\activate
-
Install the packages and dependencies as listed in requirements file
pip install -r requirements.txt --no-cache-dir --disable-pip-version-check
-
Start your development
Jupyter Notebook
orJupyter Lab
serverjupyter lab --notebook-dir=.\notebooks --no-browser
jupyter notebook
jupyter_nbextensions_configurator
-
TimeGPT: The First Foundation Model for Time Series Forecasting
-
Forecasting Stock Using Deep Learning Along With Indicators | Medium
-
Forecasting Stock Using Deep Learning Along With Indicators | OnePageCode@SubStack
-
Spark and Docker: Your Spark development cycle just got 10x faster!
-
Setting up a Spark standalone cluster on Docker in layman terms
-
Visualizing Trading Signals in Python - Plot buy and sell trading signals in Python's graph
-
Additive Decision Trees - An interpretable classification and regression model
-
Interpretable Outlier Detection: Frequent Patterns Outlier Factor (FPOF)
-
Artificial Intelligence (AI) models for Trading - Exploring Random Forests from Machine Learning
-
Data Leakage in Preprocessing, Explained: A Visual Guide with Code Examples