Reproducible configs and checkpoints
This folder contains:
Reproducible config of Table.1 in the paper of LibFewShot
.
Reproducible config of Table.2 in the paper of LibFewShot
.
Reproduction results on miniImageNet
(Results may different from the paper. Here are up-to-date results with checkpoints and configs.)
Method
Embed.
5-way 1-shot
5-way 5-shot
Reported
Ours
Reported
Ours
Baseline
Conv64F
42.11
42.34 ± 0.31
62.53
62.18 ± 0.30
ResNet18
-
-
-
-
Baseline++
Conv64F
48.24
46.21
66.43
65.18
ResNet18
-
-
-
-
RFS-simple
ResNet12
62.02 ± 0.63
62.80 ± 0.52
79.64 ± 0.44
79.57± 0.39
RFS-distill
ResNet12
-
-
-
-
SKD-GEN0
ResNet12
-
-
-
-
SKD-GEN1
ResNet12
-
-
-
-
RENet
ResNet12
67.60 ± 0.44
66.83 ± 0.36
82.58 ± 0.30
82.13 ± 0.26
MAML
Conv32F
-
-
-
-
Versa
Conv64F†
-
-
-
-
R2D2
Conv64F
-
-
-
-
Conv64F‡
-
-
-
-
ANIL
Conv32F
-
-
-
-
BOIL
Conv64F
49.61 ± 0.16
48.00 ± 0.36
66.45 ± 0.37
-
ResNet12(wo LSC)
-
52.75 ± 0.37
71.30 ± 0.28
-
MTL
ResNet12
-
-
-
-
ProtoNet†
Conv64F
-
-
-
-
RelationNet
Conv64F
-
-
-
-
CovaMNet
Conv64F
-
-
-
-
DN4
Conv64F
-
-
-
-
ResNet12†
-
-
-
-
CAN
ResNet12
-
-
-
-
DSN
Conv64F
-
-
-
-
ResNet12
-
-
-
-
Negative_Margin
ResNet12
63.85 ± 0.81
63.28 ± 0.36
81.57 ± 0.56
81.24 ± 0.26
The overview picture of the SOTAs
Method
Venue
Type
miniImageNet
tieredImageNet
1-shot
5-shot
1-shot
5-shot
Baseline
ICLR’19
Fine-tuning
44.90 ± 0.32
63.96 ± 0.30
48.20 ± 0.35
68.96 ± 0.33
Baseline++
ICML’19
Fine-tuning
48.86 ± 0.35
63.29 ± 0.30
55.94 ± 0.39
73.80 ± 0.32
RFS-simple
ECCV’20
Fine-tuning
47.97 ± 0.33
65.88 ± 0.30
52.21 ± 0.37
71.82 ± 0.32
RFS-distill
ECCV’20
Fine-tuning
-
-
SKD-GEN0
arXiv’20
Fine-tuning
48.14 ± 0.33
66.36 ± 0.29
-
-
SKD-GEN1
arXiv’20
Fine-tuning
-
-
-
-
RENet
ICCV’21
Fine-tuning
57.62 ± 0.36
74.14 ± 0.27
61.62 ± 0.40
76.74 ± 0.33
MAML
ICML’17
Meta
-
-
-
-
Versa
NeurIPS’18
Meta
-
-
-
-
R2D2
ICLR’19
Meta
51.19 ± 0.36
67.29 ± 0.31
-
-
LEO
ICLR’19
Meta
-
-
-
-
MTL
CVPR’19
Meta
-
-
-
-
ANIL
ICLR’20
Meta
-
-
-
-
BOIL
ICLR’21
Meta
-
-
-
-
ProtoNet
NeurIPS’17
Metric
47.05 ± 0.35
68.56 ± 0.16
46.11 ± 0.39
70.07 ± 0.34
RelationNet
CVPR’18
Metric
51.52 ± 0.37
66.76 ± 0.30
54.37 ± 0.44
71.93 ± 0.35
CovaMNet
AAAI’19
Metric
-
-
-
-
DN4
CVPR’19
Metric
-
-
-
-
CAN
NeurIPS’19
Metric
55.88 ± 0.38
70.98 ± 0.3
55.96 ± 0.42
70.52 ± 0.35
DSN
Conv64F
Metric
-
-
-
-
Method
Venue
Type
miniImageNet
tieredImageNet
1-shot
5-shot
1-shot
5-shot
Baseline
ICLR’19
Fine-tuning
56.39 ± 0.36
76.18 ± 0.27
-
-
Baseline++
ICML’19
Fine-tuning
56.75 ± 0.38
66.36 ± 0.29
65.95 ± 0.42
82.25 ± 0.31
RFS-simple
ECCV’20
Fine-tuning
60.96 ± 0.35
77.36 ± 0.27
70.55 ± 0.42
84.74 ± 0.29
RFS-distill
ECCV’20
Fine-tuning
-
-
-
-
SKD-GEN0
arXiv’20
Fine-tuning
66.40 ± 0.36
83.06 ± 0.24
-
-
SKD-GEN1
arXiv’20
Fine-tuning
67.35 ± 0.37
83.31 ± 0.24
-
-
RENet
ICCV’21
Fine-tuning
64.81 ± 0.37
79.90 ± 0.27
-
-
Versa
NeurIPS’18
Meta
-
-
-
-
R2D2
ICLR’19
Meta
59.52 ± 0.39
74.61 ± 0.30
65.07 ± 0.44
83.04 ± 0.30
LEO
ICLR’19
Meta
-
-
-
-
MTL
CVPR’19
Meta
-
-
-
-
ANIL
ICLR’20
Meta
-
-
-
-
BOIL
ICLR’21
Meta
-
-
-
-
ProtoNet
NeurIPS’17
Metric
54.25 ± 0.37
74.65 ± 0.29
-
-
RelationNet
CVPR’18
Metric
55.22 ± 0.39
69.25 ± 0.31
-
-
CovaMNet
AAAI’19
Metric
-
-
-
-
DN4
CVPR’19
Metric
-
-
-
-
CAN
NeurIPS’19
Metric
59.82 ± 0.38
76.54 ± 0.29
70.46 ± 0.43
84.50 ± 0.30
DSN
Conv64F
Metric
-
-
-
-
Method
Venue
Type
miniImageNet
tieredImageNet
1-shot
5-shot
1-shot
5-shot
Baseline
ICLR’19
Fine-tuning
54.11 ± 0.35
74.44 ± 0.29
64.65 ± 0.41
82.73 ± 0.29
Baseline++
ICML’19
Fine-tuning
-
-
-
-
RFS-simple
ECCV’20
Fine-tuning
61.65 ± 0.37
76.60 ± 0.28
69.14 ± 0.42
83.21 ± 0.31
RFS-distill
ECCV’20
Fine-tuning
-
-
-
-
SKD-GEN0
arXiv’20
Fine-tuning
66.18 ± 0.37
82.21 ± 0.24
-
-
SKD-GEN1
arXiv’20
Fine-tuning
66.70 ± 0.37
82.60 ± 0.24
RENet
ICCV’21
Fine-tuning
62.86 ± 0.37
-
-
-
Versa
NeurIPS’18
Meta
-
-
-
-
R2D2
ICLR’19
Meta
-
-
64.73 ± 0.44
83.40 ± 0.31
LEO
ICLR’19
Meta
-
-
-
-
MTL
CVPR’19
Meta
-
-
-
-
ANIL
ICLR’20
Meta
-
-
-
-
BOIL
ICLR’21
Meta
-
-
-
-
ProtoNet
NeurIPS’17
Metric
-
-
-
-
RelationNet
CVPR’18
Metric
53.98 ± 0.37
71.27 ± 0.31
-
-
CovaMNet
AAAI’19
Metric
-
-
-
-
DN4
CVPR’19
Metric
-
-
-
-
CAN(!re-run,h2=11!)
NeurIPS’19
Metric
60.78 ± 0.40
75.05 ± 0.29
71.70 ± 0.43
84.61 ± 0.37
DSN
Conv64F
Metric
-
-
-
-