Skip to content

Latest commit

 

History

History
 
 

reproduce

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reproducible configs and checkpoints

This folder contains:

  • Reproducible config of Table.1 in the paper of LibFewShot.
  • Reproducible config of Table.2 in the paper of LibFewShot.

Reproduction results on miniImageNet

(Results may different from the paper. Here are up-to-date results with checkpoints and configs.)

Method Embed. 5-way 1-shot 5-way 5-shot
Reported Ours Reported Ours
Baseline Conv64F 42.11 42.34 ± 0.31 62.53 62.18 ± 0.30
ResNet18 - - - -
Baseline++ Conv64F 48.24 46.21 66.43 65.18
ResNet18 - - - -
RFS-simple ResNet12 62.02 ± 0.63 62.80 ± 0.52 79.64 ± 0.44 79.57± 0.39
RFS-distill ResNet12 - - - -
SKD-GEN0 ResNet12 - - - -
SKD-GEN1 ResNet12 - - - -
RENet ResNet12 67.60 ± 0.44 66.83 ± 0.36 82.58 ± 0.30 82.13 ± 0.26
MAML Conv32F - - - -
Versa Conv64F† - - - -
R2D2 Conv64F - - - -
Conv64F‡ - - - -
ANIL Conv32F - - - -
BOIL Conv64F 49.61 ± 0.16 48.00 ± 0.36 66.45 ± 0.37 -
ResNet12(wo LSC) - 52.75 ± 0.37 71.30 ± 0.28 -
MTL ResNet12 - - - -
ProtoNet† Conv64F - - - -
RelationNet Conv64F - - - -
CovaMNet Conv64F - - - -
DN4 Conv64F - - - -
ResNet12† - - - -
CAN ResNet12 - - - -
DSN Conv64F - - - -
ResNet12 - - - -
Negative_Margin ResNet12 63.85 ± 0.81 63.28 ± 0.36 81.57 ± 0.56 81.24 ± 0.26

The overview picture of the SOTAs

Conv64F

Method Venue Type miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot
Baseline ICLR’19 Fine-tuning 44.90 ± 0.32 63.96 ± 0.30 48.20 ± 0.35 68.96 ± 0.33
Baseline++ ICML’19 Fine-tuning 48.86 ± 0.35 63.29 ± 0.30 55.94 ± 0.39 73.80 ± 0.32
RFS-simple ECCV’20 Fine-tuning 47.97 ± 0.33 65.88 ± 0.30 52.21 ± 0.37 71.82 ± 0.32
RFS-distill ECCV’20 Fine-tuning - -
SKD-GEN0 arXiv’20 Fine-tuning 48.14 ± 0.33 66.36 ± 0.29 - -
SKD-GEN1 arXiv’20 Fine-tuning - - - -
RENet ICCV’21 Fine-tuning 57.62 ± 0.36 74.14 ± 0.27 61.62 ± 0.40 76.74 ± 0.33
MAML ICML’17 Meta - - - -
Versa NeurIPS’18 Meta - - - -
R2D2 ICLR’19 Meta 51.19 ± 0.36 67.29 ± 0.31 - -
LEO ICLR’19 Meta - - - -
MTL CVPR’19 Meta - - - -
ANIL ICLR’20 Meta - - - -
BOIL ICLR’21 Meta - - - -
ProtoNet NeurIPS’17 Metric 47.05 ± 0.35 68.56 ± 0.16 46.11 ± 0.39 70.07 ± 0.34
RelationNet CVPR’18 Metric 51.52 ± 0.37 66.76 ± 0.30 54.37 ± 0.44 71.93 ± 0.35
CovaMNet AAAI’19 Metric - - - -
DN4 CVPR’19 Metric - - - -
CAN NeurIPS’19 Metric 55.88 ± 0.38 70.98 ± 0.3 55.96 ± 0.42 70.52 ± 0.35
DSN Conv64F Metric - - - -

ResNet12

Method Venue Type miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot
Baseline ICLR’19 Fine-tuning 56.39 ± 0.36 76.18 ± 0.27 - -
Baseline++ ICML’19 Fine-tuning 56.75 ± 0.38 66.36 ± 0.29 65.95 ± 0.42 82.25 ± 0.31
RFS-simple ECCV’20 Fine-tuning 60.96 ± 0.35 77.36 ± 0.27 70.55 ± 0.42 84.74 ± 0.29
RFS-distill ECCV’20 Fine-tuning - - - -
SKD-GEN0 arXiv’20 Fine-tuning 66.40 ± 0.36 83.06 ± 0.24 - -
SKD-GEN1 arXiv’20 Fine-tuning 67.35 ± 0.37 83.31 ± 0.24 - -
RENet ICCV’21 Fine-tuning 64.81 ± 0.37 79.90 ± 0.27 - -
Versa NeurIPS’18 Meta - - - -
R2D2 ICLR’19 Meta 59.52 ± 0.39 74.61 ± 0.30 65.07 ± 0.44 83.04 ± 0.30
LEO ICLR’19 Meta - - - -
MTL CVPR’19 Meta - - - -
ANIL ICLR’20 Meta - - - -
BOIL ICLR’21 Meta - - - -
ProtoNet NeurIPS’17 Metric 54.25 ± 0.37 74.65 ± 0.29 - -
RelationNet CVPR’18 Metric 55.22 ± 0.39 69.25 ± 0.31 - -
CovaMNet AAAI’19 Metric - - - -
DN4 CVPR’19 Metric - - - -
CAN NeurIPS’19 Metric 59.82 ± 0.38 76.54 ± 0.29 70.46 ± 0.43 84.50 ± 0.30
DSN Conv64F Metric - - - -

ResNet18

Method Venue Type miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot
Baseline ICLR’19 Fine-tuning 54.11 ± 0.35 74.44 ± 0.29 64.65 ± 0.41 82.73 ± 0.29
Baseline++ ICML’19 Fine-tuning - - - -
RFS-simple ECCV’20 Fine-tuning 61.65 ± 0.37 76.60 ± 0.28 69.14 ± 0.42 83.21 ± 0.31
RFS-distill ECCV’20 Fine-tuning - - - -
SKD-GEN0 arXiv’20 Fine-tuning 66.18 ± 0.37 82.21 ± 0.24 - -
SKD-GEN1 arXiv’20 Fine-tuning 66.70 ± 0.37 82.60 ± 0.24
RENet ICCV’21 Fine-tuning 62.86 ± 0.37 - - -
Versa NeurIPS’18 Meta - - - -
R2D2 ICLR’19 Meta - - 64.73 ± 0.44 83.40 ± 0.31
LEO ICLR’19 Meta - - - -
MTL CVPR’19 Meta - - - -
ANIL ICLR’20 Meta - - - -
BOIL ICLR’21 Meta - - - -
ProtoNet NeurIPS’17 Metric - - - -
RelationNet CVPR’18 Metric 53.98 ± 0.37 71.27 ± 0.31 - -
CovaMNet AAAI’19 Metric - - - -
DN4 CVPR’19 Metric - - - -
CAN(!re-run,h2=11!) NeurIPS’19 Metric 60.78 ± 0.40 75.05 ± 0.29 71.70 ± 0.43 84.61 ± 0.37
DSN Conv64F Metric - - - -