Skip to content

A image registration method using convolutional neural network features.

License

Notifications You must be signed in to change notification settings

shyu4184/cnn-registration

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cnn-registration

A image registration method using convolutional neural network features written in Python2, Tensorflow API r1.5.0.

process

Introduction

Registration of multi-temporal remote sensing images has been widely applied in military and civilian fields, such as ground target identification, urban development assessment and geographic change assessment. Ground surface change challenges feature point detection in amount and quality, which is a common dilemma faced by feature based registration algorithms. Under severe appearance variation, detected feature points may contain a large proportion of outliers, whereas inliers may be inadequate and unevenly distributed. This work presents a convolutional neural network (CNN) feature based multitemporal remote sensing image registration method with two key contributions: (i) we use a CNN to generate robust multi-scale feature descriptors; (ii) we design a gradually increasing selection of inliers to improve the robustness of feature points registration. Extensive experiments on feature matching and image registration are performed over a multi-temporal satellite image dataset and a multi-temporal unmanned aerial vehicle (UAV) image dataset. Our method outperforms four state-of-the-art methods in most scenarios.

The paper "Multi-temporal Remote Sensing Image Registration Using Deep Convolutional Features" has been published on IEEE Access. See https://ieeexplore.ieee.org/document/8404075/.

citation information:

@article{
    author={Z. Yang and T. Dan and Y. Yang}, 
    journal={IEEE Access}, 
    title={Multi-Temporal Remote Sensing Image Registration Using Deep Convolutional Features}, 
    year={2018}, 
    volume={6}, 
    pages={38544-38555}, 
    doi={10.1109/ACCESS.2018.2853100}, 
    ISSN={2169-3536}
}

Requirements

  • numpy
  • scipy
  • opencv-python
  • matplotlib
  • tensorflow (with or without gpu)
  • lap

To install all the requirements run

pip install -r requirements.txt

Pretrained VGG16 parameters file vgg16partial.npy is available at https://drive.google.com/file/d/1o1xjU9F58x83iR91LoFjLOlBdLN3bPnm/view?usp=sharing. Please download and put it under the src/ directory.

Usage

see src/demo.py

import Registration
from utils.utils import *
import cv2

# load images
IX = cv2.imread(IX_path)
IY = cv2.imread(IY_path)

#initialize
reg = Registration.CNN()

#register
X, Y, Z = reg.register(IX, IY)

#generate regsitered image using TPS
registered = tps_warp(Y, Z, IY, IX.shape)

About

A image registration method using convolutional neural network features.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%