-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
2,248 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
import os | ||
import sys | ||
import h5py | ||
import numpy as np | ||
|
||
if sys.version_info.major < 3: | ||
raise RuntimeError("Python 2 is not supported") | ||
|
||
BASE_PATH = os.path.dirname(os.path.realpath(sys.argv[0])) | ||
DIST_PATH = os.path.join(BASE_PATH, "dist-h5") | ||
os.makedirs(DIST_PATH, exist_ok=True) | ||
|
||
h5py.get_config().track_order = True | ||
|
||
|
||
def add_empty(group, name, dtype=None): | ||
dataset = group.create_dataset(name + "_empty", data=h5py.Empty(dtype)) | ||
return dataset | ||
|
||
|
||
def add_scalar(group, name, data=None, dtype=None): | ||
dataset = group.create_dataset(name + "_scalar", (), dtype, data) | ||
return dataset | ||
|
||
|
||
def add_array(group, name, data=None, dtype=None, shape=None): | ||
dataset = group.create_dataset( | ||
name + "_{0}D".format(len(shape or data.shape)), shape, dtype, data | ||
) | ||
return dataset | ||
|
||
|
||
def print_h5t_class(dataset): | ||
# https://nasa.github.io/MISR-Toolkit/html/_h5_tpublic_8h_source.html | ||
print("H5T_class=" + str(dataset.id.get_type().get_class())) | ||
|
||
|
||
with h5py.File(os.path.join(DIST_PATH, "sample.h5"), "w") as h5: | ||
# === H5T_INTEGER === | ||
|
||
add_scalar(h5, "int8", np.int8(np.iinfo(np.int8).min)) | ||
add_array(h5, "int8", np.array([[0, 1, 2], [3, 4, 5]], np.int8)) | ||
add_scalar(h5, "int16", np.int16(np.iinfo(np.int16).min)) | ||
add_array(h5, "int16", np.array([[0, 1, 2], [3, 4, 5]], np.int16)) | ||
add_scalar(h5, "int32", np.int32(np.iinfo(np.int32).min)) | ||
add_scalar(h5, "int32_BE", 0, np.dtype(">i")) | ||
add_array(h5, "int32", np.array([[0, 1, 2], [3, 4, 5]], np.int32)) | ||
add_scalar(h5, "int64", np.int64(np.iinfo(np.int64).min)) | ||
add_array(h5, "int64", np.array([[0, 1, 2], [3, 4, 5]], np.int64)) | ||
|
||
add_scalar(h5, "uint8", np.uint8(np.iinfo(np.uint8).max)) | ||
add_array(h5, "uint8", np.array([[0, 1, 2], [3, 4, 5]], np.uint8)) | ||
add_scalar(h5, "uint16", np.uint16(np.iinfo(np.uint16).max)) | ||
add_array(h5, "uint16", np.array([[0, 1, 2], [3, 4, 5]], np.uint16)) | ||
add_scalar(h5, "uint32", np.uint32(np.iinfo(np.uint32).max)) | ||
add_array(h5, "uint32", np.array([[0, 1, 2], [3, 4, 5]], np.uint32)) | ||
add_scalar(h5, "uint64", np.uint64(np.iinfo(np.uint64).max)) | ||
add_array( | ||
h5, | ||
"uint64", | ||
np.array( | ||
[[[0, 1], [2, 3]], [[4, 5], [6, np.uint64(np.iinfo(np.uint64).max)]]], | ||
np.uint64, | ||
), | ||
) | ||
|
||
# === H5T_FLOAT === | ||
|
||
add_scalar(h5, "float16", np.float16(np.finfo(np.float16).smallest_normal)) | ||
add_array(h5, "float16", np.array([[0, 1, 2], [3, 4, 5]], np.float16)) | ||
add_empty(h5, "float32", np.float32) | ||
add_scalar(h5, "float32", np.float32(np.finfo(np.float32).smallest_normal)) | ||
add_scalar(h5, "float32_BE", 0, np.dtype(">f")) | ||
add_array(h5, "float32", np.array([[0, 1, 2], [3, 4, 5]], np.float32)) | ||
add_scalar(h5, "float64", np.float64(np.finfo(np.float64).smallest_normal)) | ||
|
||
add_scalar(h5, "float64_nan", np.nan) | ||
add_scalar(h5, "float64_inf", np.inf) | ||
add_scalar(h5, "float64_ninf", np.NINF) | ||
add_scalar(h5, "float64_zero", np.PZERO) | ||
add_scalar(h5, "float64_nzero", np.NZERO) | ||
add_scalar(h5, "float64_pi", np.pi) | ||
add_array( | ||
h5, | ||
"float64", | ||
np.array([[0, 1, np.inf, 3, 4], [3, 4, np.nan, 6, 7], [6, 7, np.NINF, 9, 10]]), | ||
) | ||
|
||
add_scalar(h5, "float128", np.float128(np.finfo(np.float128).smallest_normal)) | ||
add_array(h5, "float128", np.array([[0, 1, 2], [3, 4, 5]], np.float128)) | ||
|
||
# === H5T_TIME === | ||
|
||
# Not supported by h5py | ||
|
||
# === H5T_STRING === | ||
|
||
add_empty(h5, "ascii_vlen", h5py.string_dtype("ascii")) | ||
add_scalar(h5, "ascii_vlen", b"Some text") | ||
add_scalar( | ||
h5, | ||
"ascii_fixed", | ||
np.string_("Some text"), | ||
) | ||
add_scalar(h5, "utf8_vlen", "Some text") | ||
add_array(h5, "utf8_vlen", np.array(["foo", "bar", "baz"], h5py.string_dtype())) | ||
add_scalar(h5, "utf8_fixed", "Some text", h5py.string_dtype("utf-8", 9)) | ||
|
||
# === H5T_BITFIELD === | ||
|
||
# h5py syntax unknown | ||
|
||
# === H5T_OPAQUE === | ||
|
||
add_scalar(h5, "byte_string", np.void(b"\x00\x11\x22")) | ||
add_scalar(h5, "datetime64", np.void(np.datetime64("2019-09-22T17:38:30"))) | ||
add_scalar(h5, "datetime64_not-a-time", np.void(np.datetime64("NaT"))) | ||
|
||
# === H5T_COMPOUND (and H5T_ARRAY) === | ||
|
||
add_scalar( | ||
h5, | ||
"complex64", | ||
np.complex64( | ||
np.finfo(np.complex64).smallest_normal + np.finfo(np.complex64).max * 1j | ||
), | ||
) | ||
add_array( | ||
h5, "complex64", np.array([[1 + 2j, 3 + 4j], [5 + 6j, 7 + 8j]], np.complex64) | ||
), | ||
add_scalar( | ||
h5, | ||
"complex128", | ||
np.complex128( | ||
np.finfo(np.complex128).smallest_normal + np.finfo(np.complex128).max * 1j | ||
), | ||
) | ||
add_scalar(h5, "complex128_BE", 1 + 2j, np.dtype(">c16")) | ||
add_array( | ||
h5, "complex128", np.array([[1 + 2j, 3 + 4j], [5 + 6j, 7 + 8j]], np.complex128) | ||
), | ||
add_scalar( | ||
h5, | ||
"complex256", | ||
np.complex256( | ||
np.finfo(np.complex256).smallest_normal + np.finfo(np.complex256).max * 1j | ||
), | ||
) | ||
add_array( | ||
h5, "complex256", np.array([[1 + 2j, 3 + 4j], [5 + 6j, 7 + 8j]], np.complex256) | ||
), | ||
|
||
add_scalar( | ||
h5, | ||
"compound", | ||
(1, 2.0, "foo"), | ||
[("bigint", np.int64), ("double", np.float64), ("utf-8", h5py.string_dtype())], | ||
) | ||
for_ref = add_array( | ||
h5, | ||
"compound", | ||
np.array( | ||
[(1, np.nan, "foo"), (2, np.inf, "bar"), (3, np.NZERO, "baz")], | ||
[ | ||
("bigint", np.int64), | ||
("double", np.float64), | ||
("utf-8", h5py.string_dtype()), | ||
], | ||
), | ||
) | ||
add_scalar( | ||
h5, | ||
"compound_nested", | ||
((True, 1 + 2j),), | ||
[("nested", [("bool", np.bool_), ("cplx", np.complex64)])], | ||
) | ||
|
||
comp = add_array( | ||
h5, | ||
"compound_array_vlen", | ||
np.array( | ||
[ | ||
( | ||
np.array([0, 1], np.float32), | ||
np.array([0], np.uint64), | ||
), | ||
( | ||
np.array([2, 3], np.float32), | ||
np.array([0, 1], np.uint64), | ||
), | ||
( | ||
np.array([4, 5], np.float32), | ||
np.array([0, 1, 2], np.uint64), | ||
), | ||
], | ||
[("arr", np.float32, (2,)), ("vlen", h5py.vlen_dtype(np.uint64))], | ||
), | ||
) | ||
|
||
# === H5T_REFERENCE === | ||
|
||
add_scalar(h5, "reference", for_ref.ref, h5py.special_dtype(ref=h5py.Reference)) | ||
add_scalar( | ||
h5, | ||
"reference_region", | ||
for_ref.regionref[0:1], | ||
h5py.special_dtype(ref=h5py.Reference), | ||
) | ||
|
||
# === H5T_ENUM === | ||
|
||
add_empty(h5, "bool", h5py.enum_dtype({"FALSE": 0, "TRUE": 1})) | ||
add_scalar(h5, "bool_false", False) | ||
add_scalar(h5, "bool_true", True) | ||
add_array( | ||
h5, "bool", np.array([[True, False, True, True], [False, False, True, False]]) | ||
) | ||
|
||
add_scalar( | ||
h5, | ||
"enum_uint8", | ||
1, | ||
h5py.enum_dtype({"A": 0, "B": 1}), | ||
) | ||
add_scalar( | ||
h5, | ||
"enum_int32", | ||
256, | ||
h5py.enum_dtype({"A": 256, "B": 257}, np.int32), | ||
) | ||
|
||
# === H5T_VLEN === | ||
|
||
# https://docs.h5py.org/en/stable/special.html#arbitrary-vlen-data | ||
scalar_vlen = add_scalar(h5, "vlen_int8", dtype=h5py.vlen_dtype(np.int8)) | ||
scalar_vlen[()] = [0, 1] | ||
|
||
# https://docs.h5py.org/en/stable/special.html#arbitrary-vlen-data | ||
scalar_vlen = add_array( | ||
h5, "vlen_int64", shape=(3,), dtype=h5py.vlen_dtype(np.int64) | ||
) | ||
scalar_vlen[0] = [0] | ||
scalar_vlen[1] = [0, 1] | ||
scalar_vlen[2] = [0, 1, 2] | ||
|
||
# === H5T_ARRAY === | ||
|
||
# cf. section `H5T_COMPOUND` above |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.