Skip to content
View solegalli's full-sized avatar

Sponsors

@sasi-arunachalam
@fdellajustina

Block or report solegalli

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
solegalli/README.md

Hi! I'm Sole (Soledad Galli) πŸ‘‹

Hey there! πŸ‘‹ I'm Sole, a seasoned data scientist, published author, and machine learning instructor with a passion for pushing the boundaries of what's possible in the world of data science. ✨

In my journey that kicked off in 2015, I've lent my expertise to finance and insurance companies. Here, I honed my skills in crafting robust machine learning models, tackling challenges such as insurance claim assessments, credit risk evaluations, and fraud prevention.

In 2017, I pioneered my first online course, 'Feature Engineering for Machine Learning.' Recognizing a gap in resources at the time, I've since expanded my course offerings, delving into diverse aspects of machine learning. Additionally, I've given life to an open-source Python gem: Feature-engine. πŸš€

Currently, I'm pouring my energy into advancing Feature-engine and creating new, impactful courses on machine learning.

You'll often find me sharing insights about Feature-engine and the broader machine learning landscape through blogs, talks, and podcasts.

If you discover that Feature-engine brings value to your work or learning journey, consider sponsoring my efforts or enrolling in my courses.

Your support goes a long way in fueling the growth of valuable resources and impactful courses for the community.

Excited to connect, collaborate, and learn together! 🌟"

Online Courses

Check out the courses that we teach. Courses are up to date and work with the latest Python library releases!

Courses What you will learn
Feature engineering for machine learning Learn to create new features, impute missing data, encode categorical variables, transform and discretize features and much more.
Feature selection for machine learning Learn to select features using wrapper, filter, embedded and hybrid methods, and build simpler and reliable models.
Hyperparameter optimization for machine learning Learn about grid and random search, Bayesian Optimization, Multi-fidelity models, Optuna, Hyperopt, Scikit-Optimize and more.
Machine learning with imbalanced data Learn about under- and over-sampling, ensemble and cost-sensitive methods and improve the performance of models trained on imbalanced data.
Feature engineering for time series forecasting Learn to create lag and window features, impute data in time series, encode categorical variabes and much more, specifically for forecasting.
Forecasting with Machine Learning Learn to perform time series forecasting with machine learning models like linear regression, random forests and xgboost.
Machine Learning Interpretability Learn interpret and explain white-box and black-box models both globally and locally, including methods LIME, SHAP, and more.

Books

Discover plenty of feature engineering and feature selection techniques in my books, where I seamlessly integrate plenty of methods using readily available Python libraries.

Books Summary
Python feature engineering Cookbook, third edition Over 70 code recipes to implement feature engineering in tabular, transactional, time series and text data.
Feature selection in machine learning with Python Over 20 methods to select the most predictive features and build simpler, faster, and more reliable machine learning models.

Open-source

I actively contribute to open-source libraries as part of my commitment to fostering collaborative innovation and enhancing accessibility in the realm of data science and machine learning.

Library About Role Sponsor us
Feature-engine Multiple transformers for missind data imputation, categorical encoding, variable transformation and discretization, feature creation and more. Developer and maintainer Sponsor me
tsfresh Automatically create features for time series classification One time contributor to expand documentation.
imbalanced-learn Tools for under- and over-sampling and dealing with imbalanced data Multiple PRs to improve documentation.

Follow me

Stay connected and follow me across these platforms to stay updated on the latest in data science and machine learning:

Media Summary
Train in Data Enroll in our courses and books
YouTube I post about data science, machine learning and how to become a data scientist.
Newsletter I talk about data science, machine learning and how to become a data scientist.
LinkedIn I talk about data science, machine learning and how to become a data scientist.
Twitter I tweet about data science, machine learning and how to become a data scientist.
Facebook I talk about data science, machine learning and how to become a data scientist.
Blog I write about data science, machine learning, feature engineering and selection and more.

Sponsor me

⚑ Sponsor me

Github Stats


Profile views counter


That's it! I hope to see you around.

Popular repositories Loading

  1. feature-engineering-for-machine-learning feature-engineering-for-machine-learning Public

    Code repository for the online course Feature Engineering for Machine Learning

    Jupyter Notebook 384 402

  2. feature-selection-for-machine-learning feature-selection-for-machine-learning Public

    Code repository for the online course Feature Selection for Machine Learning

    Jupyter Notebook 308 338

  3. machine-learning-imbalanced-data machine-learning-imbalanced-data Public

    Code repository for the online course Machine Learning with Imbalanced Data

    Jupyter Notebook 165 214

  4. hyperparameter-optimization hyperparameter-optimization Public

    Code repository for the online course Hyperparameter Optimization for Machine Learning

    Jupyter Notebook 112 188

  5. feature_engine feature_engine Public

    Forked from feature-engine/feature_engine

    Feature engineering package with sklearn like functionality

    Python 51 13

  6. Python-Feature-Engineering-Cookbook-First-Edition Python-Feature-Engineering-Cookbook-First-Edition Public

    Jupyter Notebook 31 25