Data profile viewer is compatible with Jupyter Notebooks. Supports the metadata format generated by datamart-profiler library.
pip install data-profile-viewer
pip install datamart-profiler
In Jupyter Notebook:
import DataProfileViewer
data = DataProfileViewer.get_lifeexpectancy_data()
DataProfileViewer.plot_data_summary(data)
import DataProfileViewer
import datamart_profiler
In a jupyter notebook, load the data
data_path = 'lifeexpectancydata.csv'
metadata = datamart_profiler.process_dataset(data_path, include_sample=True, plots=True)
and then plot it using:
DataProfileViewer.plot_data_summary(metadata)
You might want to correct/refine the type information, or provide additional annotations for the columns. To do so, use the code:
DataProfileViewer.plot_edit_profiler(metadata)
To retrieve the updated metadata, use the code:
updatedMetadata = DataProfileViewer.get_exported_metadata(data_path)