Skip to content

Commit

Permalink
restore custom_env
Browse files Browse the repository at this point in the history
  • Loading branch information
srivatsankrishnan committed Oct 20, 2023
1 parent 5d5a77d commit 66afdff
Show file tree
Hide file tree
Showing 2 changed files with 63 additions and 54 deletions.
63 changes: 63 additions & 0 deletions arch_gym/envs/custom_env.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import gym
from gym import spaces
import numpy as np
from absl import flags
import os



class CustomEnv(gym.Env):
def __init__(self, max_steps=10):
super(CustomEnv, self).__init__()
self.observation_space = spaces.Dict({"energy": spaces.Box(0, 1, (1,)),
"area": spaces.Box(0, 1, (1,)),
"latency": spaces.Box(0, 1, (1,))})

self.action_space = spaces.Dict(
{"num_cores": spaces.Discrete(15),
"freq": spaces.Box(low = 0.5, high = 3, dtype = float),
"mem_type": spaces.Discrete(3), # mem_type is one of 'DRAM', 'SRAM', 'Hybrid'
"mem_size": spaces.Discrete(65)})


self.max_steps = max_steps
self.counter = 0
self.energy = 0
self.area = 0
self.latency = 0
self.initial_state = np.array([self.energy, self.area, self.latency])
self.observation = None
self.done = False
self.ideal = np.array([4, 2.0, 1, 32]) #ideal values for action space [num_cores, freq, mem_type, mem_size]

def reset(self):
return self.initial_state

def step(self, action):
num_cores = action['num_cores']
freq = action['freq']
mem_type = action['mem_type']
mem_size = action['mem_size']

action = np.array([num_cores, freq, mem_type, mem_size])

if (self.counter == self.max_steps):
self.done = True
print("Maximum steps reached")
self.reset()
else:
self.counter += 1
# Compute the new state based on the action (random formulae for now)
self.energy += num_cores*1 + freq*2 + mem_size*3
self.area += num_cores*2 + freq*3 + mem_size*1
self.latency += num_cores*3 + freq*3 + mem_size*1

observation = np.array([self.energy, self.area, self.latency])
ideal_values = np.array([4, 2.0, 1, 32])
self.observation = observation
reward = -np.linalg.norm(action - self.ideal)

return observation, reward, self.done, {}

def render(self, mode='human'):
print (f'Energy: {self.energy}, Area: {self.area}, Latency: {self.latency}')
54 changes: 0 additions & 54 deletions arch_gym/envs/custom_gym.py

This file was deleted.

0 comments on commit 66afdff

Please sign in to comment.