Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Vizier Algorithms integrated #35

Merged
merged 7 commits into from
Oct 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 23 additions & 26 deletions arch_gym/envs/CFUPlaygroundEnv.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,18 +31,18 @@ def __init__(self, target_vals, max_steps, workload, reward_type = 'both', log_t
self.observation_space = spaces.Box(low=0, high=1e12, shape=self.observation_shape)

# define the action space
self.action_space = spaces.Tuple((
spaces.Discrete(2),
spaces.Discrete(2),
spaces.Discrete(11),
spaces.Discrete(2),
spaces.Discrete(11),
spaces.Discrete(2),
spaces.Discrete(4),
spaces.Discrete(2),
spaces.Discrete(2),
spaces.Discrete(2)
))
self.action_space = spaces.Dict({
"Bypass": spaces.Discrete(2),
"CFU_enable": spaces.Discrete(2),
"Data_cache_size": spaces.Discrete(11),
"Hardware_Divider": spaces.Discrete(2),
"Instruction_cache_size": spaces.Discrete(11),
"Hardware_Multiplier": spaces.Discrete(2),
"Branch_predictor_type": spaces.Discrete(4),
"Safe_mode_enable": spaces.Discrete(2),
"Single_Cycle_Shifter": spaces.Discrete(2),
"Single_Cycle_Multiplier": spaces.Discrete(2)
})

def reset(self):
self.no_steps=0
Expand Down Expand Up @@ -100,20 +100,17 @@ def calculate_reward(self):
def runCFUPlaygroundEnv(self, action):

# update action string to pass to subprocess
self.action = str(action[0]) # Bypass
#self.action += ',' + str(action[1]) # CFU_enable
self.action += ',0' # CFU_enable (currently set to false)
self.action += ',' + ('0' if action[2] == 0 else str(1<<(4+action[2])))
# Data cache size
self.action += ',' + str(action[3]) # Hardware Divider
self.action += ',' + ('0' if action[4] == 0 else str(1<<(4+action[4])))
# Instruction cache size
self.action += ',' + str(action[5]) # Hardware Multiplier
self.action += ',' + self.Branch_predict_types[action[6]]
# Branch predictor
self.action += ',' + str(action[7]) # Safe mode
self.action += ',' + str(action[8]) # Single Cycle Shifter
self.action += ',' + str(action[9]) # Single Cycle Multiplier
self.action = str(action["Bypass"])
#self.action += ',' + str(action["CFU_enable"])
self.action += ',0' # CFU_enable (currently set to false)
self.action += ',' + ('0' if action["Data_cache_size"] == 0 else str(1<<(4+action["Data_cache_size"])))
self.action += ',' + str(action["Hardware_Divider"])
self.action += ',' + ('0' if action["Instruction_cache_size"] == 0 else str(1<<(4+action["Instruction_cache_size"])))
self.action += ',' + str(action["Hardware_Multiplier"])
self.action += ',' + self.Branch_predict_types[action["Branch_predictor_type"]]
self.action += ',' + str(action["Safe_mode_enable"])
self.action += ',' + str(action["Single_Cycle_Shifter"])
self.action += ',' + str(action["Single_Cycle_Multiplier"])
self.action += ',' + self.target
self.action += ',' + self.workload

Expand Down
23 changes: 0 additions & 23 deletions docs/CFU_Installation_Steps.md

This file was deleted.

21 changes: 20 additions & 1 deletion install_sim.sh
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,26 @@ if [ $1 == 'cfu' ]; then

cd sims/CFU-Playground/CFU-Playground

./scripts/setup_vexriscv_build.sh
./scripts/setup
make install-sf
./scripts/setup_vexriscv_build.sh
fi

#install vizier in arch-gym conda environment
#Assumes user is in the arch-gym conda environment

if [ $1 == 'viz' ]; then

git clone https://github.com/ShvetankPrakash/vizier.git
cd vizier

sudo apt-get install -y libprotobuf-dev

pip install -r requirements.txt --use-deprecated=legacy-resolver
pip install -e .

./build_protos.sh

pip install -r requirements-algorithms.txt
pip install -r requirements-benchmarks.txt
fi
176 changes: 176 additions & 0 deletions sims/CFU-Playground/train_EMUKIT_GP_CFUPlayground.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
from concurrent import futures
import grpc
import portpicker
import sys
import os

sys.path.append('../../arch_gym/envs')
import CFUPlayground_wrapper
from absl import flags, app, logging


import envlogger
from envlogger.testing import catch_env

import numpy as np
import pandas as pd
from vizier._src.algorithms.designers import emukit
from vizier._src.algorithms.designers.emukit import EmukitDesigner
from vizier.service import clients
from vizier.service import pyvizier as vz
from vizier.service import vizier_server
from vizier.service import vizier_service_pb2_grpc


flags.DEFINE_string('workload', 'micro_speech', 'workload the processor is being optimized for')
flags.DEFINE_integer('num_steps', 1, 'Number of training steps.')
# flags.DEFINE_integer('num_episodes', 1, 'Number of training episodes.')
flags.DEFINE_string('traject_dir', 'EMUKIT_trajectories','Directory to save the dataset.')
flags.DEFINE_bool('use_envlogger',True, 'Use envlogger to log the data.')
flags.DEFINE_string('summary_dir', '.', 'Directory to save the summary.')
flags.DEFINE_string('reward_formulation', 'both', 'Which reward formulation to use?')
flags.DEFINE_integer('num_random_sample', 100, 'hyperparameter for emukit')

FLAGS = flags.FLAGS


envdm = catch_env.Catch()


def log_fitness_to_csv(filename, fitness_dict):
"""Logs fitness history to csv file

Args:
filename (str): path to the csv file
fitness_dict (dict): dictionary containing the fitness history
"""
df = pd.DataFrame([fitness_dict['reward']])
csvfile = os.path.join(filename, "fitness.csv")
df.to_csv(csvfile, index=False, header=False, mode='a')

# append to csv
df = pd.DataFrame([fitness_dict])
csvfile = os.path.join(filename, "trajectory.csv")
df.to_csv(csvfile, index=False, header=False, mode='a')


def wrap_in_envlogger(env, envlogger_dir):
"""Wraps the environment in envlogger

Args:
env (gym.Env): gym environment
envlogger_dir (str): path to the directory where the data will be logged
"""
metadata = {
'agent_type': 'EMUKIT_GP_EI',
'num_steps': FLAGS.num_steps,
'env_type': type(env).__name__,
}
if FLAGS.use_envlogger:
logging.info('Wrapping environment with EnvironmentLogger...')
env = envlogger.EnvLogger(env,
data_directory=envlogger_dir,
max_episodes_per_file=1000,
metadata=metadata)
logging.info('Done wrapping environment with EnvironmentLogger.')
return env
else:
return env


def main(_):

env = CFUPlayground_wrapper.make_cfuplaygroundEnv(target_vals = [1000, 1000],rl_form='EMUKIT', reward_type = FLAGS.reward_formulation, max_steps = FLAGS.num_steps, workload = FLAGS.workload)

fitness_hist = {}
problem = vz.ProblemStatement()
problem.search_space.select_root().add_int_param(name='Bypass', min_value = 0, max_value = 1)
problem.search_space.select_root().add_int_param(name='CFU_enable', min_value = 0, max_value = 1)
problem.search_space.select_root().add_int_param(name='Data_cache_size', min_value = 0, max_value = 10)
problem.search_space.select_root().add_int_param(name='Hardware_Divider', min_value = 0, max_value = 1)
problem.search_space.select_root().add_int_param(name='Instruction_cache_size', min_value = 0, max_value = 10)
problem.search_space.select_root().add_int_param(name='Hardware_Multiplier', min_value = 0, max_value = 1)
problem.search_space.select_root().add_int_param(name='Branch_predictor_type', min_value = 0, max_value = 3)
problem.search_space.select_root().add_int_param(name='Safe_mode_enable', min_value = 0, max_value = 1)
problem.search_space.select_root().add_int_param(name='Single_Cycle_Shifter', min_value = 0, max_value = 1)
problem.search_space.select_root().add_int_param(name='Single_Cycle_Multiplier', min_value = 0, max_value = 1)

problem.metric_information.append(
vz.MetricInformation(
name='Reward', goal=vz.ObjectiveMetricGoal.MAXIMIZE))


study_config = vz.StudyConfig.from_problem(problem)
# study_config.algorithm = vz.Algorithm.EMUKIT_GP_EI
emukit_designer = emukit.EmukitDesigner(problem, num_random_samples= FLAGS.num_random_sample)




port = portpicker.pick_unused_port()
address = f'localhost:{port}'

# Setup server.
server = grpc.server(futures.ThreadPoolExecutor(max_workers=100))

# Setup Vizier Service.
servicer = vizier_server.VizierService()
vizier_service_pb2_grpc.add_VizierServiceServicer_to_server(servicer, server)
server.add_secure_port(address, grpc.local_server_credentials())

# Start the server.
server.start()

clients.environment_variables.service_endpoint = address # Server address.
study = clients.Study.from_study_config(
study_config, owner='owner', study_id='example_study_id')

# experiment name
exp_name = FLAGS.workload+ "_num_steps_" + str(FLAGS.num_steps) + "_reward_type+" + FLAGS.reward_formulation

# append logs to base path
log_path = os.path.join(FLAGS.summary_dir, 'EMUKIT_logs', FLAGS.reward_formulation, exp_name)

# get the current working directory and append the exp name
traject_dir = os.path.join(FLAGS.summary_dir, FLAGS.traject_dir, FLAGS.reward_formulation, exp_name)

# check if log_path exists else create it
if not os.path.exists(log_path):
os.makedirs(log_path)

if FLAGS.use_envlogger:
if not os.path.exists(traject_dir):
os.makedirs(traject_dir)
env = wrap_in_envlogger(env, traject_dir)

count = 0
env.reset()
suggestions = emukit_designer.suggest(count=flags.FLAGS.num_steps)
for suggestion in suggestions:
count += 1

action = {"Bypass": int(str(suggestion.parameters['Bypass'])),
"CFU_enable": int(str(suggestion.parameters['CFU_enable'])),
"Data_cache_size": int(str(suggestion.parameters['Data_cache_size'])),
"Hardware_Divider": int(str(suggestion.parameters['Hardware_Divider'])),
"Instruction_cache_size": int(str(suggestion.parameters['Instruction_cache_size'])),
"Hardware_Multiplier": int(str(suggestion.parameters['Hardware_Multiplier'])),
"Branch_predictor_type": int(str(suggestion.parameters['Branch_predictor_type'])),
"Safe_mode_enable": int(str(suggestion.parameters['Safe_mode_enable'])),
"Single_Cycle_Shifter": int(str(suggestion.parameters['Single_Cycle_Shifter'])),
"Single_Cycle_Multiplier": int(str(suggestion.parameters['Single_Cycle_Multiplier']))}

done, reward, info, obs = (env.step(action))
fitness_hist['reward'] = reward
fitness_hist['action'] = action
fitness_hist['obs'] = obs
if count == FLAGS.num_steps:
done = True
log_fitness_to_csv(log_path, fitness_hist)
print("Observation: ",obs)
final_measurement = vz.Measurement({'Reward': reward})
suggestion = suggestion.to_trial()
suggestion.complete(final_measurement)

if __name__ == '__main__':
app.run(main)
Loading