-
Notifications
You must be signed in to change notification settings - Fork 0
sssqweeeed/handmade-ml
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
{ "cells": [ { "cell_type": "markdown", "source": [ "## handmade-ml: Welcome notebook\n", "\n", "### Models\n", "* Linear Regression\n", "* Decision Tree\n", "* Random Forest (Classifier)\n", "* GBT\n", "\n", "You can read more about these models inside their folders." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 1, "outputs": [], "source": [ "# plots, simple datasets\n", "import seaborn as sns\n", "# plots\n", "import matplotlib as plt\n", "# work with databases\n", "import pandas as pd\n", "# math, vectorized operations\n", "import numpy as np\n", "from metrics import mse, error\n", "\n", "from sklearn.metrics import accuracy_score, mean_squared_error, mean_absolute_error\n", "from sklearn.preprocessing import MinMaxScaler, StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "\n", "%load_ext autoreload\n", "%autoreload 2" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "### Linear regression" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 9, "outputs": [], "source": [ "wine_quality_dataset = pd.read_csv('datasets/winequality-red.csv')\n", "wine_quality_dataset.head()\n", "\n", "feature_columns = list(wine_quality_dataset.columns)\n", "feature_columns.remove('quality')\n", "pred_column = 'quality'\n", "\n", "X, y = wine_quality_dataset[feature_columns].astype(float), wine_quality_dataset[pred_column].astype(float)\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\n", "prep = MinMaxScaler()\n", "prep.fit(X_train)\n", "X_train = prep.fit_transform(X_train)\n", "X_test = prep.transform(X_test)\n" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 10, "outputs": [], "source": [ "# feature_columns = ['fixed acidity']" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 11, "outputs": [ { "data": { "text/plain": "0.6518541092800736" }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from LinearModels.LinearReg import LinearRegression\n", "model = LinearRegression(\n", " num_iters=1000,\n", " regularization='lasso',\n", " learning_rate=1.0,\n", " reg_lmb=0.0\n", ")\n", "model.fit(np.array(X_train), np.array(y_train))\n", "y_pred = model.predict(np.array(X_test))\n", "mean_absolute_error(y_pred, y_test)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "### Decision tree" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 8, "outputs": [ { "data": { "text/plain": "0.5021684698676662" }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from Trees.Tree import TreeRegressor\n", "model = TreeRegressor(metric=mean_absolute_error, criterion='entropy', max_depth=5, minimize=True, debug=False)\n", "model.fit(X_train, y_train)\n", "pred = model.predict(X_test, predict_col='target')\n", "mean_absolute_error(pred['target'], y_test)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "### GBT" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 6, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iteration: 3, Loss: 0.5548046304394244\n", "\n", "Iteration: 4, Loss: 0.517176783565545\n", "\n", "Iteration: 5, Loss: 0.4930375806110396\n", "\n", "Iteration: 6, Loss: 0.48312167424749897\n", "\n", "Iteration: 7, Loss: 0.4598877124507926\n", "\n", "Iteration: 8, Loss: 0.4586910957712947\n", "\n", "Iteration: 9, Loss: 0.4335972170195566\n", "\n" ] } ], "source": [ "from Boosting.TreeBoost import SimpleTreeBoostRegressor\n", "model = SimpleTreeBoostRegressor(\n", " n_estimators=10,\n", " lr=0.1,\n", " metric=mse,\n", " derivative=error,\n", " max_depth=3,\n", " colsample_bytree=0.8,\n", " criterion='entropy',\n", " subsample=0.8,\n", " minimize=True,\n", " debug=False,\n", ")\n", "df = pd.DataFrame(X_train)\n", "df['target'] = list(y_train)\n", "\n", "model.fit(df, target='target')\n", "# pred = model.predict(X_test, predict_col='pred')\n", "# mean_absolute_error(pred['target'], y_test)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 7, "outputs": [ { "data": { "text/plain": "0.5697732394729527" }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame(X_test)\n", "df['target'] = list(y_test)\n", "model.predict(df, predict_col='pred')\n", "mean_absolute_error(df['target'], df['pred'])" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published