Skip to content

stan-dev/posteriordb-r

Repository files navigation

R-CMD-check Codecov test coverage

posteriordb: an R package to work with posteriordb

This repository contains the R package to efficiently work with the posteriordb repository. The R package includes convenience functions to access data, model code and information for individual posteriors, models, data and draws.

Installation

To install only the R package and then access the posteriors remotely, install the package from GitHub using the remotes package.

remotes::install_github("stan-dev/posteriordb-r")

To load the package, just run.

library(posteriordb)

Connect to the posterior database

First, we create the posterior database connection to use. Here we want to use the database locally. We assume the posteriordb repo has been cloned and is accessible locally.

my_pdb <- pdb_local()

The above code requires that your working directory be the cloned repository’s main folder. Otherwise, we can use the path argument in pdb_local() to point to the local posterior database. We can also set the environment variable PBD_PATH to handle the connection. For more details, see ?pdb.

The most straightforward approach is to use the GitHub repository directly to access the database.

my_pdb <- pdb_github()

When you have a connection to the posterior database of choice, you can access the data, models etc., using the same functionality.

Contributing content using R

If you want to contribute to a posteriordb, see the vignette vignettes/contributing.

Access content

To list the posteriors in the database, use posterior_names().

pos <- posterior_names(my_pdb)
head(pos)
## [1] "arK-arK"                         "arma-arma11"                    
## [3] "bball_drive_event_0-hmm_drive_0" "bball_drive_event_1-hmm_drive_1"
## [5] "bones_data-bones_model"          "butterfly-multi_occupancy"

In the same fashion, we can list data and models included in the database as

mn <- model_names(my_pdb)
head(mn)
## [1] "2pl_latent_reg_irt" "accel_gp"           "accel_splines"     
## [4] "arK"                "arma11"             "blr"
dn <- data_names(my_pdb)
head(dn)
## [1] "arK"                 "arma"                "bball_drive_event_0"
## [4] "bball_drive_event_1" "bones_data"          "butterfly"

We can also get all information on each posterior as a table with

pos <- posteriors_tbl_df(my_pdb)
head(pos)
## # A tibble: 6 × 7
##   name        model_name reference_poste… data_name added_by added_date keywords
##   <chr>       <chr>      <chr>            <chr>     <chr>    <date>     <chr>   
## 1 arK-arK     arK        arK-arK          arK       Mans Ma… 2019-11-19 stan_be…
## 2 arma-arma11 arma11     arma-arma11      arma      Mans Ma… 2020-01-08 stan_be…
## 3 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_ex…
## 4 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_be…
## 5 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_ex…
## 6 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_be…

The posterior’s name is made up of the data and model fitted to the data. Together, these two uniquely define a posterior distribution. To access a posterior object, we can use the posterior name.

po <- posterior("eight_schools-eight_schools_centered", my_pdb)

From the posterior object, we can access data, model code (i.e., Stan code in this case) and other useful information.

dat <- pdb_data(po)
dat
## $J
## [1] 8
## 
## $y
## [1] 28  8 -3  7 -1  1 18 12
## 
## $sigma
## [1] 15 10 16 11  9 11 10 18
code <- stan_code(po)
code
## data {
##   int <lower=0> J; // number of schools
##   real y[J]; // estimated treatment
##   real<lower=0> sigma[J]; // std of estimated effect
## }
## parameters {
##   real theta[J]; // treatment effect in school j
##   real mu; // hyper-parameter of mean
##   real<lower=0> tau; // hyper-parameter of sdv
## }
## model {
##   tau ~ cauchy(0, 5); // a non-informative prior
##   theta ~ normal(mu, tau);
##   y ~ normal(theta, sigma);
##   mu ~ normal(0, 5);
## }

We can also access the paths to data after they have been unzipped and copied to the cache directory set in pdb (the R temp directory by default).

dfp <- data_file_path(po)
dfp
## [1] "/var/folders/8x/bgssdq5n6dx1_ydrhq1zgrym0000gn/T//Rtmpwafi9o/posteriordb_cache/data/data/eight_schools.json"
scfp <- stan_code_file_path(po)
scfp
## [1] "/var/folders/8x/bgssdq5n6dx1_ydrhq1zgrym0000gn/T//Rtmpwafi9o/posteriordb_cache/models/stan/eight_schools_centered.stan"

We can also access information regarding the model and the data used to compute the posterior.

data_info(po)
## Data: eight_schools
## The 8 schools dataset of Rubin (1981)
model_info(po)
## Model: eight_schools_centered
## A centered hiearchical model for 8 schools
## Frameworks: 'stan', 'pymc3'

Note that the references reference BibTeX items found in content/references/references.bib.

We can access most of the posterior information as a tbl_df using

tbl <- posteriors_tbl_df(my_pdb)
head(tbl)
## # A tibble: 6 × 7
##   name        model_name reference_poste… data_name added_by added_date keywords
##   <chr>       <chr>      <chr>            <chr>     <chr>    <date>     <chr>   
## 1 arK-arK     arK        arK-arK          arK       Mans Ma… 2019-11-19 stan_be…
## 2 arma-arma11 arma11     arma-arma11      arma      Mans Ma… 2020-01-08 stan_be…
## 3 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_ex…
## 4 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_be…
## 5 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_ex…
## 6 bball_driv… hmm_drive… bball_drive_eve… bball_dr… Oliver … 2020-05-10 stan_be…

In addition, we can also access a list of posteriors with filter_posteriors(). The filtering function follows dplyr filter semantics.

pos <- filter_posteriors(pdb = my_pdb, data_name == "eight_schools")
pos
## [[1]]
## Posterior (eight_schools-eight_schools_centered)
## 
## Data: eight_schools
## The 8 schools dataset of Rubin (1981)
## 
## Model: eight_schools_centered
## A centered hiearchical model for 8 schools
## Frameworks: 'stan', 'pymc3'
## 
## [[2]]
## Posterior (eight_schools-eight_schools_noncentered)
## 
## Data: eight_schools
## The 8 schools dataset of Rubin (1981)
## 
## Model: eight_schools_noncentered
## A non-centered hiearchical model for 8 schools
## Frameworks: 'stan'

To access reference posterior draws, we use reference_posterior_draws().

rpd <- reference_posterior_draws(po)

The function reference_posterior_draws() returns a posterior draws_list object that can be summarized and transformed using the posterior package.

posterior::summarize_draws(rpd)
## # A tibble: 10 × 10
##    variable  mean median    sd   mad     q5   q95  rhat ess_bulk ess_tail
##    <chr>    <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 theta[1]  6.15   5.59  5.62  4.56 -1.68  16.3   1.00   10095.    9732.
##  2 theta[2]  4.94   4.77  4.65  4.14 -2.22  12.8   1.00   10049.   10139.
##  3 theta[3]  3.91   4.11  5.28  4.48 -4.91  11.8   1.00    9533.    9339.
##  4 theta[4]  4.80   4.70  4.77  4.22 -2.67  12.6   1.00   10026.    9666.
##  5 theta[5]  3.61   3.82  4.61  4.15 -4.26  10.6   1.00    9922.   10207.
##  6 theta[6]  4.05   4.16  4.80  4.32 -3.87  11.5   1.00    9783.   10039.
##  7 theta[7]  6.32   5.80  5.00  4.39 -0.855 15.3   1.00   10039.    9690.
##  8 theta[8]  4.88   4.79  5.32  4.47 -3.32  13.5   1.00    9605.    9871.
##  9 mu        4.41   4.36  3.31  3.30 -0.936  9.83  1.00   10041.    9973.
## 10 tau       3.60   2.75  3.20  2.55  0.257  9.73  1.00    9989.    9992.

To access information on the reference posterior we can use reference_posterior_draws_info() or use info() on the reference posterior. The posterior reference draws return information on how the reference posterior was computed.

rpi <- reference_posterior_draws_info(po)
rpi
## Posterior: eight_schools-eight_schools_noncentered
## Method: stan_sampling (rstan 2.21.1)
## Arguments:
##   chains: 10
##   iter: 20000
##   warmup: 10000
##   thin: 10
##   seed: 4711
##     adapt_delta: 0.95
info(rpd)
## Posterior: eight_schools-eight_schools_noncentered
## Method: stan_sampling (rstan 2.21.1)
## Arguments:
##   chains: 10
##   iter: 20000
##   warmup: 10000
##   thin: 10
##   seed: 4711
##     adapt_delta: 0.95

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published