Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

multivariate students t distribution #266

Merged
merged 2 commits into from
Aug 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/distribution/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ pub use self::laplace::Laplace;
pub use self::log_normal::LogNormal;
pub use self::multinomial::Multinomial;
pub use self::multivariate_normal::MultivariateNormal;
pub use self::multivariate_students_t::MultivariateStudent;
pub use self::negative_binomial::NegativeBinomial;
pub use self::normal::Normal;
pub use self::pareto::Pareto;
Expand Down Expand Up @@ -60,6 +61,7 @@ mod laplace;
mod log_normal;
mod multinomial;
mod multivariate_normal;
mod multivariate_students_t;
mod negative_binomial;
mod normal;
mod pareto;
Expand Down
144 changes: 96 additions & 48 deletions src/distribution/multivariate_normal.rs
Original file line number Diff line number Diff line change
@@ -1,12 +1,84 @@
use crate::distribution::Continuous;
use crate::distribution::Normal;
use crate::statistics::{Max, MeanN, Min, Mode, VarianceN};
use crate::{Result, StatsError};
use crate::StatsError;
use nalgebra::{Cholesky, Const, DMatrix, DVector, Dim, DimMin, Dyn, OMatrix, OVector};
use rand::Rng;
use std::f64;
use std::f64::consts::{E, PI};

/// computes both the normalization and exponential argument in the normal distribution
/// # Errors
/// will error on dimension mismatch
pub(super) fn density_normalization_and_exponential<D>(
mu: &OVector<f64, D>,
cov: &OMatrix<f64, D, D>,
precision: &OMatrix<f64, D, D>,
x: &OVector<f64, D>,
) -> std::result::Result<(f64, f64), StatsError>
where
D: DimMin<D, Output = D>,
nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<f64, D>
+ nalgebra::allocator::Allocator<f64, D, D>
+ nalgebra::allocator::Allocator<(usize, usize), D>,
{
Ok((
density_distribution_pdf_const(mu, cov)?,
density_distribution_exponential(mu, precision, x)?,
))
}

/// computes the argument of the exponential term in the normal distribution
/// ```text
/// ```
/// # Errors
/// will error on dimension mismatch
#[inline]
pub(super) fn density_distribution_exponential<D>(
mu: &OVector<f64, D>,
precision: &OMatrix<f64, D, D>,
x: &OVector<f64, D>,
) -> std::result::Result<f64, StatsError>
where
D: Dim,
nalgebra::DefaultAllocator:
nalgebra::allocator::Allocator<f64, D> + nalgebra::allocator::Allocator<f64, D, D>,
{
if x.shape_generic().0 != precision.shape_generic().0
|| x.shape_generic().0 != mu.shape_generic().0
|| !precision.is_square()
{
return Err(StatsError::ContainersMustBeSameLength);
}
let dv = x - mu;
let exp_term: f64 = -0.5 * (precision * &dv).dot(&dv);
Ok(exp_term)
// TODO update to dimension mismatch error
}

/// computes the argument of the normalization term in the normal distribution
/// # Errors
/// will error on dimension mismatch
#[inline]
pub(super) fn density_distribution_pdf_const<D>(
mu: &OVector<f64, D>,
cov: &OMatrix<f64, D, D>,
) -> std::result::Result<f64, StatsError>
where
D: DimMin<D, Output = D>,
nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<f64, D>
+ nalgebra::allocator::Allocator<f64, D, D>
+ nalgebra::allocator::Allocator<(usize, usize), D>,
{
if cov.shape_generic().0 != mu.shape_generic().0 || !cov.is_square() {
return Err(StatsError::ContainersMustBeSameLength);
}
let cov_det = cov.determinant();
Ok(((2. * PI).powi(mu.nrows() as i32) * cov_det.abs())
.recip()
.sqrt())
}

/// Implements the [Multivariate Normal](https://en.wikipedia.org/wiki/Multivariate_normal_distribution)
/// distribution using the "nalgebra" crate for matrix operations
///
Expand Down Expand Up @@ -44,7 +116,7 @@ impl MultivariateNormal<Dyn> {
///
/// Returns an error if the given covariance matrix is not
/// symmetric or positive-definite
pub fn new(mean: Vec<f64>, cov: Vec<f64>) -> Result<Self> {
pub fn new(mean: Vec<f64>, cov: Vec<f64>) -> Result<Self, StatsError> {
let mean = DVector::from_vec(mean);
let cov = DMatrix::from_vec(mean.len(), mean.len(), cov);
MultivariateNormal::new_from_nalgebra(mean, cov)
Expand All @@ -66,7 +138,10 @@ where
///
/// Returns an error if the given covariance matrix is not
/// symmetric or positive-definite
pub fn new_from_nalgebra(mean: OVector<f64, D>, cov: OMatrix<f64, D, D>) -> Result<Self> {
pub fn new_from_nalgebra(
mean: OVector<f64, D>,
cov: OMatrix<f64, D, D>,
) -> Result<Self, StatsError> {
// Check that the provided covariance matrix is symmetric
if cov.lower_triangle() != cov.upper_triangle().transpose()
// Check that mean and covariance do not contain NaN
Expand All @@ -77,22 +152,18 @@ where
{
return Err(StatsError::BadParams);
}
let cov_det = cov.determinant();
let pdf_const = ((2. * PI).powi(mean.nrows() as i32) * cov_det.abs())
.recip()
.sqrt();
// Store the Cholesky decomposition of the covariance matrix
// for sampling
match Cholesky::new(cov.clone()) {
None => Err(StatsError::BadParams),
Some(cholesky_decomp) => {
let precision = cholesky_decomp.inverse();
Ok(MultivariateNormal {
pdf_const: density_distribution_pdf_const(&mean, &cov).unwrap(),
cov_chol_decomp: cholesky_decomp.unpack(),
mu: mean,
cov,
precision,
pdf_const,
})
}
}
Expand Down Expand Up @@ -231,9 +302,8 @@ where
impl<'a, D> Continuous<&'a OVector<f64, D>, f64> for MultivariateNormal<D>
where
D: Dim,
nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<f64, D>
+ nalgebra::allocator::Allocator<f64, D, D>
+ nalgebra::allocator::Allocator<f64, nalgebra::Const<1>, D>,
nalgebra::DefaultAllocator:
nalgebra::allocator::Allocator<f64, D> + nalgebra::allocator::Allocator<f64, D, D>,
{
/// Calculates the probability density function for the multivariate
/// normal distribution at `x`
Expand All @@ -246,47 +316,18 @@ where
///
/// where `μ` is the mean, `inv(Σ)` is the precision matrix, `det(Σ)` is the determinant
/// of the covariance matrix, and `k` is the dimension of the distribution
fn pdf(&self, x: &'a OVector<f64, D>) -> f64 {
let dv = x - &self.mu;
let exp_term = -0.5
* *(&dv.transpose() * &self.precision * &dv)
.get((0, 0))
.unwrap();
self.pdf_const * exp_term.exp()
}

/// Calculates the log probability density function for the multivariate
/// normal distribution at `x`. Equivalent to pdf(x).ln().
fn ln_pdf(&self, x: &'a OVector<f64, D>) -> f64 {
let dv = x - &self.mu;
let exp_term = -0.5
* *(&dv.transpose() * &self.precision * &dv)
.get((0, 0))
.unwrap();
self.pdf_const.ln() + exp_term
}
}

impl Continuous<Vec<f64>, f64> for MultivariateNormal<Dyn> {
/// Calculates the probability density function for the multivariate
/// normal distribution at `x`
///
/// # Formula
///
/// ```text
/// (2 * π) ^ (-k / 2) * det(Σ) ^ (1 / 2) * e ^ ( -(1 / 2) * transpose(x - μ) * inv(Σ) * (x - μ))
/// ```
///
/// where `μ` is the mean, `inv(Σ)` is the precision matrix, `det(Σ)` is the determinant
/// of the covariance matrix, and `k` is the dimension of the distribution
fn pdf(&self, x: Vec<f64>) -> f64 {
self.pdf(&DVector::from(x))
fn pdf(&self, x: &OVector<f64, D>) -> f64 {
self.pdf_const
* density_distribution_exponential(&self.mu, &self.precision, x)
.unwrap()
.exp()
}

/// Calculates the log probability density function for the multivariate
/// normal distribution at `x`. Equivalent to pdf(x).ln().
fn ln_pdf(&self, x: Vec<f64>) -> f64 {
self.pdf(&DVector::from(x))
fn ln_pdf(&self, x: &OVector<f64, D>) -> f64 {
self.pdf_const.ln()
+ density_distribution_exponential(&self.mu, &self.precision, x).unwrap()
}
}

Expand Down Expand Up @@ -609,4 +650,11 @@ mod tests {
ln_pdf(dvector![100., 100.]),
);
}

#[test]
#[should_panic]
fn test_pdf_mismatched_arg_size() {
let mvn = MultivariateNormal::new(vec![0., 0.], vec![1., 0., 0., 1.,]).unwrap();
mvn.pdf(&vec![1.].into()); // x.size != mu.size
}
}
Loading