Skip to content

stylerhall/heist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Heist

python

This package provides tools for extracting financial data from PDF files. With this data you may search for specific transactions or write out CSV files for Excel or Google Sheets.


Statement Classes

Review your PDF file to understand how each transaction line is specified as you will likely need to subclass and create custom regex patterns to fit your statement needs.

The finance module contains the base class for financial statements. There are a few examples of sub-classed statements that illustrate how to add new financial institutions. When subclassing the StatementBase class as a new financial statement class, you must implement the _get_transaction_details() and _parse_transaction() methods.

Regex Patterns

Statement classes also have two regex attributes which define the pdf transaction formatting __re_page_end__ and __re_transaction__

The pattern for extracting the date, description, amount, and balance would look something like this:

03/25       Example charge description                -10.00         123.45
__re_transaction__: str = (
    r"(?P<date>\d+/\d+)\s+"
    r"(?P<desc>.+)\s+"
    r"(?P<amount>.*[\d]+\.[\d]+)\s+"
    r"(?P<balance>[\d\.,\-]+)"
)

Example Usage and Searching

from pathlib import Path

from heist import finance, expense, sheet
from heist.finance import TransactionType

# batch all transactions from multiple lenders into a list
transactions: list[TransactionType] = expense.get_chase_checking("c:/path/to/pdf/files")
transactions.extend(expense.get_chase_amazon("c:/path/to/pdf/files"))
transactions.extend(expense.get_barclays_arrivalplus("c:/path/to/pdf/files"))

# wildcard search for transactions using a string or list of strings
vehicle_reg: list[dict] = finance.search_transactions("dmv", transactions)
amazon: list[dict] = finance.search_transactions(["amazon", "amzn"], transactions)
apple: list[dict] = finance.search_transactions("apple.com", transactions)
google: list[dict] = finance.search_transactions("google", transactions)
subscriptions: list[dict] = finance.search_transactions(["netflix", "openai", "hulu", "spotify"], transactions)

# specify and create the csv destination folder
csv_folder: Path = Path("c:/path/to/write/csv/files")
csv_folder.mkdir(parents=True, exist_ok=True)

# csv column sort order based on transaction data
sort_list: list[str] = ["bank", "date", "description", "amount", "miles"]
sheet.write_csv(csv_folder.joinpath("all_transactions.csv"), transactions, sort_list=sort_list)
sheet.write_csv(csv_folder.joinpath("vehicle_registration.csv"), vehicle_reg, sort_list=sort_list)
sheet.write_csv(csv_folder.joinpath("amazon.csv"), amazon, sort_list=sort_list)
sheet.write_csv(csv_folder.joinpath("apple.csv"), apple, sort_list=sort_list)
sheet.write_csv(csv_folder.joinpath("google.csv"), google, sort_list=sort_list)
sheet.write_csv(csv_folder.joinpath("subscriptions.csv"), subscriptions, sort_list=sort_list)

Dependencies


Social

github twitter


Changelist

  • 2024-24-03: Initial commit

About

A library for extracting financial transactions from PDF files.

Topics

Resources

License

Stars

Watchers

Forks

Languages