Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bokeh chart updates. Fixed class colors. Filter classes. Added controls to adjust dots size. New option to assign tags or create labeling jobs. #10

Merged
merged 3 commits into from
Dec 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions .devcontainer/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && apt install python3-pip -y
RUN apt-get install -y git
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y

RUN pip3 install torch==1.11.0 torchvision==0.12.0

RUN pip3 install transformers==4.33.2 timm==0.9.5 scikit-learn==1.3.1 umap-learn==0.5.4

# Download metaclip base model
RUN python3 -c 'import transformers; transformers.AutoModel.from_pretrained("facebook/metaclip-b16-fullcc2.5b")'

RUN pip3 install supervisely==6.73.258
RUN pip3 install fastapi==0.109.0 bokeh==3.1.1
LABEL python_sdk_version=6.73.258

RUN pip3 install ruamel.yaml==0.17.21

RUN apt-get update

RUN apt-get -y install curl

RUN apt -y install wireguard iproute2
RUN apt-get -y install wget
RUN apt-get install nano

LABEL "role"="development"
20 changes: 20 additions & 0 deletions .devcontainer/devcontainer.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
{
"name": "EmbeddingsDevContainer",
"build": {
"dockerfile": "Dockerfile"
},
"customizations": {
"vscode": {
"extensions": [
"ms-python.python",
"ms-python.black-formatter"
]
}
},
"runArgs": [
"--ipc=host",
"--net=host",
"--cap-add",
"NET_ADMIN"
]
}
4 changes: 2 additions & 2 deletions config.json
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"name": "Explore data with embeddings",
"description": "Calculate and visualize embeddings",
"entrypoint": "python -m uvicorn src.main:app --host 0.0.0.0 --port 8000",
"docker_image": "supervisely/embeddings_app:1.0.3",
"docker_image": "supervisely/embeddings_app:1.0.4",
"port": 8000,
"icon": "https://user-images.githubusercontent.com/115161827/211832834-eef9325d-9e00-4499-ae42-2e7ee3d97f1a.png",
"icon_cover": true,
Expand All @@ -26,7 +26,7 @@
"target": ["images_project", "images_dataset"],
"context_category": "Metric Learning"
},
"instance_version": "6.12.12",
"instance_version": "6.12.17",
"need_gpu": false,
"gpu": "preferred",
"community_agent": false
Expand Down
2 changes: 1 addition & 1 deletion dev_requirements.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
supervisely==6.73.258
supervisely==6.73.266
transformers==4.33.2
timm==0.9.5
torch
Expand Down
4 changes: 2 additions & 2 deletions docker/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ RUN pip3 install transformers==4.33.2 timm==0.9.5 scikit-learn==1.3.1 umap-learn
# Download metaclip base model
RUN python -c 'import transformers; transformers.AutoModel.from_pretrained("facebook/metaclip-b16-fullcc2.5b")'

RUN pip3 install supervisely==6.73.258
RUN pip3 install supervisely==6.73.266
RUN pip3 install fastapi==0.109.0 bokeh==3.1.1

LABEL python_sdk_version=6.73.258
LABEL python_sdk_version=6.73.266
196 changes: 171 additions & 25 deletions src/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,8 @@
from supervisely.app.content import StateJson, DataJson
from dotenv import load_dotenv
import torch
import re
from typing import List, Union, Tuple
from supervisely.app.widgets import (
ScatterChart,
Container,
Card,
LabeledImage,
Expand All @@ -23,19 +22,20 @@
Button,
Field,
Progress,
SelectDataset,
IFrame,
Bokeh,
SelectDatasetTree,
NotificationBox,
Empty,
Flexbox,
)

from . import run_utils
from . import calculate_embeddings


def update_globals(new_dataset_ids):
global dataset_ids, project_id, workspace_id, team_id, project_info, project_meta, is_marked, tag_meta
global dataset_ids, project_id, workspace_id, team_id, project_info, project_meta, is_marked, tag_meta, issue_tag_meta
dataset_ids = new_dataset_ids
if dataset_ids:
project_id = api.dataset.get_info_by_id(dataset_ids[0]).project_id
Expand All @@ -57,15 +57,20 @@ def update_globals(new_dataset_ids):
is_marked = False
tag_meta = project_meta.get_tag_meta(tag_name)
print("tag_meta is exists:", bool(tag_meta))
issue_tag_meta = project_meta.get_tag_meta(issue_tag_name)
print("issue_tag_meta is exists:", bool(issue_tag_meta))


### Globals init
available_projection_methods = ["UMAP", "PCA", "t-SNE", "PCA-UMAP", "PCA-t-SNE"]
tag_name = "MARKED"
issue_tag_name = "ISSUE"
instance_mode = None

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))
api = sly.Api()
if sly.is_development():
load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))
api = sly.Api.from_env()

# if app had started from context menu, one of this has to be set:
project_id = sly.env.project_id(raise_not_found=False)
Expand Down Expand Up @@ -169,18 +174,50 @@ def update_globals(new_dataset_ids):
content = Container([btn_run, check_force_recalculate, progress, info_run])
card_run = Card(title="Run", content=content)

### Embeddings Chart Settings
dot_size_btn = Button("Change dots size", button_size="small")
dot_size_num = InputNumber(min=0.01, value=0.05, step=0.01)
dot_size = Flexbox([Container([dot_size_num, dot_size_btn], direction="horizontal")])

### Embeddings Chart
bokeh = Bokeh(plots=[], x_axis_visible=True, y_axis_visible=True, grid_visible=True)
bokeh = Bokeh(
plots=[],
x_axis_visible=True,
y_axis_visible=True,
grid_visible=True,
show_legend=True,
legend_location="right",
legend_click_policy="hide",
)
bokeh_iframe = IFrame()
card_chart = Card(content=bokeh_iframe)
card_chart = Card(content=Container([dot_size, bokeh_iframe]), title="Embeddings chart", collapsable=True)
labeled_image = LabeledImage()
text = Text("no object selected")
show_all_anns = False
cur_info = None
btn_toggle = Button(f"Show all annotations: {show_all_anns}", "default", button_size="small")
btn_mark = Button(f"Assign tag 'MARKED'", button_size="small")
card_preview = Card(title="Object preview", content=Container(widgets=[labeled_image, text, btn_toggle, btn_mark]))
preview_widgets = Container([labeled_image, text, btn_toggle, btn_mark])
preview_widgets.hide()


cur_infos = None
batch_text = Text()
issue_tag_text = Text()
add_issue_tag = Button(f"Asign 'ISSUE' tags", button_size="small", plain=True)
job_issue = Button(f"Create Labeling Job", button_size="small", plain=True)
batch_tagging_field = Field(
Container([Flexbox([add_issue_tag, Empty(), job_issue]), issue_tag_text]),
"Issues",
"Assign 'ISSUE' tag to IMAGES or Create Labeling Job",
)
batch_tagging_cont = Container([batch_text, batch_tagging_field])
batch_tagging_cont.hide()

card_preview = Card(
title="Preview card",
content=Container(widgets=[preview_widgets, batch_tagging_cont]),
)
card_embeddings_chart = Container(widgets=[card_chart, card_preview], direction="horizontal", fractions=[3, 1])
card_embeddings_chart.hide()

Expand All @@ -199,6 +236,12 @@ def update_globals(new_dataset_ids):
)


@dot_size_btn.click
def change_dot_size():
bokeh.update_radii(dot_size_num.value)
bokeh_iframe.set(bokeh.html_route_with_timestamp, height="650px", width="100%")


@btn_toggle.click
def toggle_ann():
global show_all_anns
Expand All @@ -209,17 +252,65 @@ def toggle_ann():


@bokeh.value_changed
def on_click(selected_idxs):
global global_idxs_mapping, all_info_list, project_meta, is_marked, tag_meta
if len(selected_idxs) >= 1:
info = all_info_list[selected_idxs[0]]
def on_click(selected_idxs: List[Tuple[Union[int, str], List[int]]]):
global global_idxs_mapping, all_info_list, project_meta, is_marked, tag_meta, cur_infos

issue_tag_text.text = ""
batch_tagging_cont.show()

selected_ids = [global_idxs_mapping[d.plot_id][i] for d in selected_idxs for i in d.selected_ids]
selected_cnt = len(selected_ids)
if selected_cnt == 1:
batch_text.text = ""
preview_widgets.show()
info = all_info_list[selected_ids[0]]
cur_infos = [info]
if tag_meta is not None:
tag = read_tag(info["image_id"], info["object_id"])
is_marked = bool(tag)
update_marked()
show_image(info, project_meta)
if btn_mark.is_hidden():
btn_mark.show()
elif selected_cnt > 1:
preview_widgets.hide()
cur_infos = [all_info_list[i] for i in selected_ids]
obj_clss = list(set([info["object_cls"] for info in cur_infos]))
is_objects = any([info["object_id"] is not None for info in cur_infos])
is_images = any([info["object_id"] is None for info in cur_infos])
both = is_objects and is_images

t = f"{len(cur_infos)} "
t += "items. " if both else "images. " if is_images else "objects. "
t += f"Object classes: {str(obj_clss)}. "
batch_text.set(t, "info")


@job_issue.click
def create_labeling_job():
global cur_infos
issue_tag_text.text = ""
if cur_infos is not None:
ds_id_to_img_ids = defaultdict(set)
for info in cur_infos:
ds_id_to_img_ids[info["dataset_id"]].add(info["image_id"])
jobs = []
for ds_id, img_ids in ds_id_to_img_ids.items():
if len(img_ids) > 0:
jobs.extend(
api.labeling_job.create(
f"Labeling job for {project_info.name} project embeddings",
ds_id,
[api.user.get_my_info().id],
images_ids=list(img_ids),
# include_images_with_tags=[issue_tag_name],
)
)
if len(jobs) > 0:
ids = [job.id for job in jobs]
issue_tag_text.set(f"Labeling jobs created IDs: {ids}", "success")
else:
issue_tag_text.set("No objects to create labeling job", "warning")


def update_marked():
Expand All @@ -230,6 +321,34 @@ def update_marked():
btn_mark.text = "Assign tag 'MARKED'"


@add_issue_tag.click
def issue_tagging():
global project_meta, cur_infos, issue_tag_meta
if issue_tag_meta is None:
print("first marking, creating tag_meta")
issue_tag_meta = sly.TagMeta(issue_tag_name, sly.TagValueType.NONE)
project_meta, issue_tag_meta = get_or_create_tag_meta(project_id, issue_tag_meta)

ds_ids_to_img_ids = defaultdict(set)
for info in cur_infos:
ds_ids_to_img_ids[info["dataset_id"]].add(info["image_id"])

added = 0
for ds_id, img_ids in ds_ids_to_img_ids.items():
img_ids_to_mark = []
img_ids = list(img_ids)
for img_id, tag in zip(img_ids, read_img_tags(ds_id, img_ids, issue_tag_meta)):
if tag is None:
img_ids_to_mark.append(img_id)

if len(img_ids_to_mark) > 0:
add_img_tags(list(img_ids_to_mark), issue_tag_meta)
added += len(img_ids_to_mark)

if added > 0:
issue_tag_text.set(f"Assigned 'ISSUE' tags: {added} images", "success")


@btn_mark.click
def on_mark():
global project_info, project_meta, tag_meta, cur_info, is_marked
Expand Down Expand Up @@ -280,7 +399,7 @@ def update_table():

@btn_run.click
def run():
global model_name, global_idxs_mapping, all_info_list # , project_meta, dataset_ids, project_id, workspace_id, team_id
global model_name, global_idxs_mapping, all_info_list, instance_mode

selected_datasets = set()
for dataset_id in dataset_selector.get_selected_ids():
Expand Down Expand Up @@ -385,17 +504,22 @@ def run():
print(f"n_classes = {len(obj_classes)}")
series, pre_colors, global_idxs_mapping = run_utils.make_series(projections, all_info_list, project_meta)

series_len = len(series)
x_coordinates, y_coordinates, colors = [], [], []
for s, color in zip(series, pre_colors):
x_coordinates.extend([i["x"] for i in s["data"]])
y_coordinates.extend([i["y"] for i in s["data"]])
colors.extend([color] * len(s["data"]))

r = 0.15 if series_len > 1000 else 0.1
plot = Bokeh.Circle(x_coordinates, y_coordinates, radii=r, colors=colors)
bokeh.clear()
bokeh.add_plots([plot])
plots = []
for s, color in zip(series, pre_colors):
x_coordinates = [i["x"] for i in s["data"]]
y_coordinates = [i["y"] for i in s["data"]]
r = 0.05
plot = Bokeh.Circle(
x_coordinates,
y_coordinates,
radii=r,
colors=[color] * len(s["data"]),
legend_label=s["name"],
plot_id=s["name"],
)
plots.append(plot)
bokeh.add_plots(plots)
bokeh_iframe.set(bokeh.html_route_with_timestamp, height="650px", width="100%")
card_embeddings_chart.show()
update_table()
Expand All @@ -421,6 +545,24 @@ def get_tag_meta(project_id, name) -> sly.TagMeta:
return project_meta.get_tag_meta(name)


def read_img_tags(ds_id, image_ids, tag_meta):
tags = []
if len(image_ids) > 0:
filters = [{"field": "id", "operator": "in", "value": image_ids}]
image_infos = api.image.get_list(ds_id, filters=filters, force_metadata_for_links=False)
id_to_info = {img_info.id: img_info for img_info in image_infos}
for img_id in image_ids:
curr_tags = [tag for tag in id_to_info[img_id].tags if tag["tagId"] == tag_meta.sly_id]
tags.append(curr_tags[0] if len(curr_tags) == 1 else None)
return tags


def read_labels_tags(object_ids, tag_meta):
if len(object_ids) == 0:
return []
return [read_label_tag(obj_id, tag_meta) for obj_id in object_ids]


def read_img_tag(image_id, tag_meta):
image_info = api.image.get_info_by_id(image_id)
tags = [tag for tag in image_info.tags if tag["tagId"] == tag_meta.sly_id]
Expand All @@ -444,6 +586,10 @@ def read_tag(image_id, object_id):
return read_label_tag(object_id, tag_meta)


def add_img_tags(image_ids, tag_meta, value=None):
return api.image.add_tag_batch(image_ids=image_ids, tag_id=tag_meta.sly_id, value=value)


def add_img_tag(image_id, tag_meta, value=None):
return api.image.add_tag(image_id=image_id, tag_id=tag_meta.sly_id, value=value)

Expand Down
Loading
Loading