Skip to content

syzer/distributedNgram

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WAT

Greenkeeper badge

Simply put predict next word user will write.

HOWTO

installation

    git clone [email protected]:syzer/distributedNgram.git && cd $_
    npm install
    npm install --save-dev

The file nGram.js offers more compact version of code:

    npm start

testing basic distributed task

var jsSpark = require('js-spark')({workers: 16});
var task = jsSpark.jsSpark;
var q = jsSpark.q;

task([20, 30, 40, 50])
    // this is executed on client side
    .map(function addOne(num) {
        return num + 1;
    })
    .reduce(function sumUp(sum, num) {
        return sum + num;
    })
    .run()
    .then(function(data) {
        // this is executed on back on server
        console.log('i finished calculating', data);
    })

tests

    npm test

Tasks

clone https://github.com/syzer/distributedNgram.git

./index.js

load:

  1. dracula

  2. lodash

  3. load helpers

(gist)

// helpers ./lib/index.js

make function prepare()

// remove special characters
function prepare(str){}
prepare('“Listen to them, the children of the night. What music they make!”')
//=>"listen to them the children of the night what music they make"

(gist)

./index.js

make bigramText()

bigramText("to listen to them the children of the night what music they make");
//=>{to: {listen: 1, them:1} , listen:{to:1}, the:{children:1}}...
function bigramText(str) {
    return arr.reduce(bigramArray);
}

(gist)

./index.js

function mergeSmall()

  1. create 2 tasks ch01, and ch02

  2. use tasks to bigram those chapters

  3. reduce response with _.merge

(gist)

./index.js

function mergeBig(texts)

  1. load [ch1, ch2, ch3] or texts

  2. make distinct tasks to bigram this text

  3. reduce with _.mergeObjectsInArr

  4. cache result

  5. return result

(gist)

./index.js

function predict(word)

  1. load appropriate key/word from cache

  2. calc total hits

  3. sort all hits in order,

may use helper function objToSortedArr(obj)

  1. calc frequency/probability of next word

(gist)

./index.js

function train(fileName, splitter)

  1. load file

  2. prepare

  3. use splitter(string) to create separate tasks

  4. calculate tasks on clients using mergeBig()

TODO

[ ] git checkout [ ] js-spark adventure

About

distributed word prediction using Js-Spark AKA TypeAhead

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published