German Sentiment analysis with GerVADER using Scala
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
Karsten Michael Tymann, Matthias Lutz, Patrick Palsbröker and Carsten Gips: GerVADER - A German adaptation of the VADER sentiment analysis tool for social media texts. In Proceedings of the Conference "Lernen, Wissen, Daten, Analysen" (LWDA 2019), Berlin, Germany, September 30 - October 2, 2019.
Ziya Sarikaya, Sentiment: Sentiment analysis using VADER in Scala, (2017), GitHub repository, https://github.com/ziyasal/Sentiment
R. Remus, U. Quasthoff & G. Heyer: SentiWS - a Publicly Available German-language Resource for Sentiment Analysis. In: Proceedings of the 7th International Language Ressources and Evaluation (LREC'10), pp. 1168-1171, 2010
Schuette, S. (2021). Analyse der Impfbereitschaft der Deutschen anhand von Beitr¨agen auf Twitter. Bachelorarbeit, Hochschule fur Wirtschaft und ¨ Technik Berlin.
Sidarenka, U. (2016). PotTS: The Potsdam Twitter sentiment corpus. (pp. 1133–1141).
Remus, R., Quasthoff, U., & Heyer, G. (2010). SentiWS - A Publicly Available Germanlanguage Resource for Sentiment Analysis. (pp. 1168–1171).
Guhr, O., Schumann, A.-K., Bahrmann, F., & Böhme, H. J. (2020). Training a broadcoverage german sentiment classification model for dialog systems. (pp. 1620–1625).
Cieliebak, M., Deriu, J. M., Egger, D., & Uzdilli, F. (2017). A Twitter Corpus and Benchmark Resources for German Sentiment Analysis. (pp. 45–51).
Goldhahn, D., Eckart, T., & Quasthoff, U. (2012). Building large monolingual dictionaries at the leipzig corpora collection: From 100 to 200 languages. (pp. 759–765)
Sänger, M., Leser, U., Kemmerer, S., Adolphs, P., & Klinger, R. (2016). SCARE — The Sentiment Corpus of App Reviews with Fine-grained Annotations in German. (pp. 1114–1121).