Skip to content

Commit

Permalink
Merge pull request #787 from lucifer2307/sd3
Browse files Browse the repository at this point in the history
A C++ program for Prim's Minimum Spanning Tree (MST) algorithm. The program is for adjacency matrix representation of the graph
  • Loading branch information
tanus786 authored Oct 29, 2022
2 parents 336e4f9 + b5728d2 commit 5b323eb
Showing 1 changed file with 110 additions and 0 deletions.
110 changes: 110 additions & 0 deletions Advanced data structures/Prim’s Minimum.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
// A C++ program for Prim's Minimum
// Spanning Tree (MST) algorithm. The program is
// for adjacency matrix representation of the graph
#include <bits/stdc++.h>
using namespace std;

// Number of vertices in the graph
#define V 5

// A utility function to find the vertex with
// minimum key value, from the set of vertices
// not yet included in MST
int minKey(int key[], bool mstSet[])
{
// Initialize min value
int min = INT_MAX, min_index;

for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;

return min_index;
}

// A utility function to print the
// constructed MST stored in parent[]
void printMST(int parent[], int graph[V][V])
{
cout << "Edge \tWeight\n";
for (int i = 1; i < V; i++)
cout << parent[i] << " - " << i << " \t"
<< graph[i][parent[i]] << " \n";
}

// Function to construct and print MST for
// a graph represented using adjacency
// matrix representation
void primMST(int graph[V][V])
{
// Array to store constructed MST
int parent[V];

// Key values used to pick minimum weight edge in cut
int key[V];

// To represent set of vertices included in MST
bool mstSet[V];

// Initialize all keys as INFINITE
for (int i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = false;

// Always include first 1st vertex in MST.
// Make key 0 so that this vertex is picked as first
// vertex.
key[0] = 0;
parent[0] = -1; // First node is always root of MST

// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick the minimum key vertex from the
// set of vertices not yet included in MST
int u = minKey(key, mstSet);

// Add the picked vertex to the MST Set
mstSet[u] = true;

// Update key value and parent index of
// the adjacent vertices of the picked vertex.
// Consider only those vertices which are not
// yet included in MST
for (int v = 0; v < V; v++)

// graph[u][v] is non zero only for adjacent
// vertices of m mstSet[v] is false for vertices
// not yet included in MST Update the key only
// if graph[u][v] is smaller than key[v]
if (graph[u][v] && mstSet[v] == false
&& graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}

// print the constructed MST
printMST(parent, graph);
}

// Driver's code
int main()
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int graph[V][V] = { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };

// Print the solution
primMST(graph);

return 0;
}

// This code is contributed by rathbhupendra

0 comments on commit 5b323eb

Please sign in to comment.