Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update kNearestNeighbour.py #2975

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 44 additions & 33 deletions ML Algorithms/kNearestNeighbour.py
Original file line number Diff line number Diff line change
@@ -1,41 +1,52 @@
import matplotlib.pyplot as plt
import numpy as np
import math
f=[[10,5],[40,7],[3,2],[5,3]]
l=['good','good','bad','bad']
x=[]
y=[]
s=len(set(l)) #shows all categories present
import math

# Input data points
f = [[10, 5], [40, 7], [3, 2], [5, 3]]
l = ['good', 'good', 'bad', 'bad']

# Initialize numpy arrays
x = np.array([point[0] for point in f])
y = np.array([point[1] for point in f])

print(x, " ", y)

# Plot data points based on labels
for i in range(len(f)):
f1=f[i][0]
x=np.append(x,f1)
f2=f[i][1]
y=np.append(y,f2)
print(x," ",y)
for i in range(len(f)):
if (l[i]== 'good'):
plt.plot(x[i],y[i],'r*')
if l[i] == 'good':
plt.plot(x[i], y[i], 'r*', label='Good Habits' if i == 0 else "")
else:
plt.plot(x[i],y[i],"y^")
p = int(input("Enter saving%"))
q = int(input("Enter no. of good habit"))
k=int(input("Enter k"))
plt.plot(p,q,'b*')
disx=[]
disy=[]
dis=[]
if (k>len(f)):
k=len(f)
for i in range(len(x)):
dis=np.append(dis,math.sqrt(((p-x[i])**2)+((q-y[i])**2)))
plt.plot(x[i], y[i], 'y^', label='Bad Habits' if i == 0 else "")

# User inputs
p = int(input("Enter saving%: "))
q = int(input("Enter no. of good habits: "))
k = int(input("Enter k: "))

# Plot user input point
plt.plot(p, q, 'b*', label='User Input')

# Calculate distances
dis = np.array([math.sqrt(((p - x[i]) ** 2) + ((q - y[i]) ** 2)) for i in range(len(x))])
print(dis)

# Sort distances and get the k smallest
dis.sort()
min1=[]
for i in range(k):
min1=np.append(min1,dis[i])
min1 = dis[:k] # Get the k smallest distances
print(min1)
sum1=0
for i in range(len(min1)):
sum1=sum1+min1[i]
print(sum1/len(min1)) #avgmin = sum1/len(min1)

# Calculate average of the smallest distances
if len(min1) > 0:
avg_min = sum(min1) / len(min1)
print("Average of the k smallest distances:", avg_min)
else:
print("No distances to calculate average.")

# Add legends and labels
plt.title('Habits Visualization')
plt.xlabel('Saving Percentage')
plt.ylabel('Number of Good Habits')
plt.legend()
plt.grid(True)
plt.show()