Skip to content

te-king/NeuroFlow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation



Build status codecov crates

NeuroFlow is fast neural networks (deep learning) Rust crate. It relies on three pillars: speed, reliability, and speed again.

Hello, everyone! Work on the crate is currently suspended because I am a little busy to do it :( Thanks you all

How to use

Let's try to approximate very simple function 0.5*sin(e^x) - cos(e^(-x)).

extern crate neuroflow;

use neuroflow::FeedForward;
use neuroflow::data::DataSet;
use neuroflow::activators::Type::Tanh;


fn main(){
    /*
        Define neural network with 1 neuron in input layers. Network contains 4 hidden layers.
        And, such as our function returns single value, it is reasonable to have 1 neuron in the output layer.
    */
    let mut nn = FeedForward::new(&[1, 7, 8, 8, 7, 1]);
    
    /*
        Define DataSet.
        
        DataSet is the Type that significantly simplifies work with neural network.
        Majority of its functionality is still under development :(
    */
    let mut data: DataSet = DataSet::new();
    let mut i = -3.0;
    
    // Push the data to DataSet (method push accepts two slices: input data and expected output)
    while i <= 2.5 {
        data.push(&[i], &[0.5*(i.exp().sin()) - (-i.exp()).cos()]);
        i += 0.05;
    }
    
    // Here, we set necessary parameters and train neural network by our DataSet with 50 000 iterations
    nn.activation(Tanh)
        .learning_rate(0.01)
        .train(&data, 50_000);

    let mut res;
    
    // Let's check the result
    i = 0.0;
    while i <= 0.3{
        res = nn.calc(&[i])[0];
        println!("for [{:.3}], [{:.3}] -> [{:.3}]", i, 0.5*(i.exp().sin()) - (-i.exp()).cos(), res);
        i += 0.07;
    }
}

Expected output

for [0.000], [-0.120] -> [-0.119]
for [0.070], [-0.039] -> [-0.037]
for [0.140], [0.048] -> [0.050]
for [0.210], [0.141] -> [0.141]
for [0.280], [0.240] -> [0.236]

But we don't want to lose our trained network so easily. So, there is functionality to save and restore neural networks from files.

    /*
        In order to save neural network into file call function save from neuroflow::io module.
        
        First argument is link on the saving neural network;
        Second argument is path to the file. 
    */
    neuroflow::io::save(&mut nn, "test.flow").unwrap();
    
    /*
        After we have saved the neural network to the file we can restore it by calling
        of load function from neuroflow::io module.
        
        We must specify the type of new_nn variable.
        The only argument of load function is the path to file containing
        the neural network
    */
    let mut new_nn: FeedForward = neuroflow::io::load("test.flow").unwrap();

Classic XOR problem (with no classic input of data)

Let's create file named TerribleTom.csv in the root of project. This file should have following innards:

0,0,-,0
0,1,-,1
1,0,-,1
1,1,-,0

where - is the delimiter that separates input vector from its desired output vector.

extern crate neuroflow;

use neuroflow::FeedForward;
use neuroflow::data::DataSet;
use neuroflow::activators::Type::Tanh;


fn main(){
    /*
        Define neural network with 2 neurons in input layers,
        1 hidden layer (with 2 neurons),
        1 neuron in output layer
    */
    let mut nn = FeedForward::new(&[2, 2, 1]);
    
    // Here we load data for XOR from the file `TerribleTom.csv`
    let mut data = DataSet::from_csv("TerribleTom.csv");
    
    // Set parameters and train the network
    nn.activation(Tanh)
        .learning_rate(0.1)
        .momentum(0.15)
        .train(&data, 20_000);

    let mut res;
    let mut d;
    for i in 0..data.len(){
        res = nn.calc(data.get(i).0)[0];
        d = data.get(i);
        println!("for [{:.3}, {:.3}], [{:.3}] -> [{:.3}]", d.0[0], d.0[1], d.1[0], res);
    }
}

Expected output

for [0.000, 0.000], [0.000] -> [0.000]
for [1.000, 0.000], [1.000] -> [1.000]
for [0.000, 1.000], [1.000] -> [1.000]
for [1.000, 1.000], [0.000] -> [0.000]

Installation

Insert into your project's cargo.toml block next line

[dependencies]
neuroflow = "0.1.3"

Then in project root file

extern crate neuroflow;

License

MIT License

Attribution

The origami bird from logo is made by Freepik

About

Awesome deep learning crate

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Rust 100.0%