Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor modification on the tutorials before ping pang sample #7

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/user/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ TensorLayer

.. code-block:: bash

cd to the root of the git tree
进入git clone出来的目录,(cd tensorlayer)
pip3 install . -e

此命令将运行 ``setup.py`` 来安装TensorLayer。
Expand Down
6 changes: 3 additions & 3 deletions docs/user/tutorial.rst
Original file line number Diff line number Diff line change
Expand Up @@ -354,12 +354,12 @@ Dropout,DropConnect,堆栈式降噪自编码器(Stacked Denoising Autoenco
训练 ``DenseLayer`` ,只需要运行 ``ReconLayer.Pretrain()`` 即可。
如果要使用去噪自编码器,腐蚀层(corrosion layer)(``DropoutLayer``)的名字需要按后面说的指定。
如果要保存特征图像,设置 ``save`` 为 True 。
灯具不同的架构和应用这里可以设置许多预训练的度量(metric)
根据不同的架构和应用这里可以设置许多预训练的度量(metric)

对于 sigmoid型激活函数来说,自编码器可以用KL散度来实现。
而对于 整流器(rectifier)来说,对激活函数输出的L1正则化能使得输出投影到稀疏空间中。
所以 ``ReconLayer`` 的默认行为只对整流激活函数提供sigmoid型激活函数,L1正则化激活输出和均方差的KLD和交叉熵
我们建立您修改 ``ReconLayer`` 来实现自己的预训练度量。
我们建议您修改 ``ReconLayer`` 来实现自己的预训练度量。

.. code-block:: python

Expand All @@ -382,7 +382,7 @@ Dropout,DropConnect,堆栈式降噪自编码器(Stacked Denoising Autoenco
最后,``main_test_cnn_layer()`` 脚本创建了两个CNN 层和最大汇流(max pooling stages),一个全连接的隐藏层和一个全连接的输出层。

首先,我们添加一个 :class:`Conv2dLayer<tensorlayer.layers.Conv2dLayer>` ,
它顶部有32个5x5的滤波器,紧接着在两个2个向量的同尺寸的最大汇流
它顶部有32个5x5的滤波器,紧接着在两个2x2向量的同尺寸的最大汇流


.. code-block:: python
Expand Down