forked from lonePatient/albert_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_albert_tf_checkpoint_to_pytorch.py
81 lines (69 loc) · 3.08 KB
/
convert_albert_tf_checkpoint_to_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BERT checkpoint."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import torch
from model.modeling_albert import BertConfig, BertForPreTraining, load_tf_weights_in_albert
import logging
logging.basicConfig(level=logging.INFO)
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file,share_type, pytorch_dump_path):
# Initialise PyTorch model
config = BertConfig.from_pretrained(bert_config_file,share_type=share_type)
# print("Building PyTorch model from configuration: {}".format(str(config)))
model = BertForPreTraining(config)
# Load weights from tf checkpoint
load_tf_weights_in_albert(model, config, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--tf_checkpoint_path",
default = None,
type = str,
required = True,
help = "Path to the TensorFlow checkpoint path.")
parser.add_argument("--bert_config_file",
default = None,
type = str,
required = True,
help = "The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument('--share_type',
default='all',
type=str,
choices=['all', 'attention', 'ffn', 'None'])
parser.add_argument("--pytorch_dump_path",
default = None,
type = str,
required = True,
help = "Path to the output PyTorch model.")
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path,
args.bert_config_file,
args.share_type,
args.pytorch_dump_path)
'''
example:
python convert_albert_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path=./pretrain/tf/albert_xlarge_zh \
--bert_config_file=./configs/albert_config_xlarge.json \
--pytorch_dump_path=./pretrain/pytorch/albert_xlarge_zh/pytorch_model.bin \
--share_type=all
'''