The seer
package provides implementations of a novel framework for
forecast model selection using time series features. We call this
framework FFORMS (Feature-based FORecast Model
Selection). For more details see our
paper.
You could install the stable version on CRAN:
install.packages("seer")
You could install the development version from Github using
# install.packages("devtools")
devtools::install_github("thiyangt/seer")
library(seer)
The FFORMS framework consists of two main phases: i) offline phase, which includes the development of a classification model and ii) online phase, use the classification model developed in the offline phase to identify “best” forecast-model. This document explains the main functions using a simple dataset based on M3-competition data. To load data,
library(Mcomp)
data(M3)
yearly_m3 <- subset(M3, "yearly")
m3y <- M3[1:2]
1. Augmenting the observed sample with simulated time series.
We augment our reference set of time series by simulating new time
series. In order to produce simulated series, we use several standard
automatic forecasting algorithms such as ETS or automatic ARIMA models,
and then simulate multiple time series from the selected model within
each model class. sim_arimabased
can be used to simulate time series
based on (S)ARIMA models.
library(seer)
simulated_arima <- lapply(m3y, sim_arimabased, Future=TRUE, Nsim=2, extralength=6, Combine=FALSE)
simulated_arima
#> $N0001
#> $N0001[[1]]
#> Time Series:
#> Start = 1989
#> End = 2008
#> Frequency = 1
#> [1] 5250.625 5712.954 6104.263 6334.452 6451.587 6631.049 6892.326 7084.455
#> [9] 7106.546 7128.279 7033.692 7147.769 7206.443 7285.990 7489.372 7699.149
#> [17] 8064.242 8429.848 8778.885 9034.438
#>
#> $N0001[[2]]
#> Time Series:
#> Start = 1989
#> End = 2008
#> Frequency = 1
#> [1] 5510.096 6093.238 6746.888 7525.771 8308.890 9187.684 10218.533
#> [8] 11235.409 12141.275 13094.103 14044.905 14960.304 15924.745 16948.186
#> [15] 17981.709 19150.732 20370.531 21614.823 22827.625 24072.370
#>
#>
#> $N0002
#> $N0002[[1]]
#> Time Series:
#> Start = 1989
#> End = 2008
#> Frequency = 1
#> [1] 3465.620 3191.829 4304.698 3847.379 3602.237 3915.753 3494.527 4362.448
#> [9] 4035.779 3747.029 4624.970 4118.961 2934.112 3181.819 2989.654 3371.835
#> [17] 3140.430 1889.399 2725.146 2660.041
#>
#> $N0002[[2]]
#> Time Series:
#> Start = 1989
#> End = 2008
#> Frequency = 1
#> [1] 3353.043 4117.149 3383.415 3937.489 3738.965 3843.712 4469.110 4458.730
#> [9] 4813.231 5545.400 5543.881 4300.503 3622.531 3639.930 3532.176 2749.227
#> [17] 2969.335 3553.993 3839.163 4763.522
Similarly, sim_etsbased
can be used to simulate time series based on
ETS
models.
simulated_ets <- lapply(m3y, sim_etsbased, Future=TRUE, Nsim=2, extralength=6, Combine=FALSE)
simulated_ets
2. Calculate features based on the training period of time series.
Our proposed framework operates on the features of the time series.
cal_features
function can be used to calculate relevant features for a
given list of time series.
library(tsfeatures)
M3yearly_features <- seer::cal_features(yearly_m3, database="M3", h=6, highfreq = FALSE)
head(M3yearly_features)
#> # A tibble: 6 x 25
#> entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.568 0 0 0.971 0.995 0.000000237 3.58 0.424 0.412
#> 2 0.745 0 0 0.947 0.869 0.000179 2.05 -2.08 0.324
#> 3 0.423 0 0 0.949 0.865 0.000193 1.75 -2.26 0.457
#> 4 0.513 0 0 0.949 0.853 0.000368 2.87 -1.25 0.281
#> 5 0.553 0 0 0.855 0.586 0.00127 -0.765 -1.77 0.192
#> 6 0.709 0 0 0.964 0.964 0.0000217 3.56 -0.574 0.181
#> # … with 16 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> # y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> # lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
#> # diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>
Calculate features from the simulated time series in the step 1
features_simulated_arima <- lapply(simulated_arima, function(temp){
lapply(temp, cal_features, h=6, database="other", highfreq=FALSE)})
fea_sim <- lapply(features_simulated_arima, function(temp){do.call(rbind, temp)})
do.call(rbind, fea_sim)
#> # A tibble: 4 x 25
#> entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.579 0 0 0.965 0.980 3.22e-6 3.39 -1.10 0.344
#> 2 0.342 0 0 0.973 1.00 1.44e-9 3.58 0.153 0.466
#> 3 1 0 0 0.500 0.345 3.28e-3 -0.300 -1.51 -0.195
#> 4 0.796 0 0 0.869 0.695 1.06e-3 1.04 -1.82 0.174
#> # … with 16 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> # y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> # lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
#> # diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>
3. Calculate forecast accuracy measure(s)
fcast_accuracy
function can be used to calculate forecast error
measure (in the following example MASE) from each candidate model. This
step is the most computationally intensive and time-consuming, as each
candidate model has to be estimated on each series. In the following
example ARIMA(arima), ETS(ets), random walk(rw), random walk with
drift(rwd), standard theta method(theta) and neural network time series
forecasts(nn) are used as possible models. In addition to these models
following models can also be used in the case of handling seasonal time
series,
- snaive: seasonal naive method
- stlar: STL decomposition is applied to the time series and then seasonal naive method is used to forecast seasonal component. AR model is used to forecast seasonally adjusted data.
- mstlets: STL decomposition is applied to the time series and then seasonal naive method is used to forecast seasonal component. ETS model is used to forecast seasonally adjusted data.
- mstlarima: STL decomposition is applied to the time series and then seasonal naive method is used to forecast seasonal component. ARIMA model is used to forecast seasonally adjusted data.
- tbats: TBATS models
tslist <- list(M3[[1]], M3[[2]])
accuracy_info <- fcast_accuracy(tslist=tslist, models= c("arima","ets","rw","rwd", "theta", "nn"), database ="M3", cal_MASE, h=6, length_out = 1, fcast_save = TRUE)
accuracy_info
#> $accuracy
#> arima ets rw rwd theta nn
#> [1,] 1.566974 1.5636089 7.703518 4.2035176 6.017236 2.4105916
#> [2,] 1.698388 0.9229687 1.698388 0.6123443 1.096000 0.2797229
#>
#> $ARIMA
#> [1] "ARIMA(0,2,0)" "ARIMA(0,1,0)"
#>
#> $ETS
#> [1] "ETS(M,A,N)" "ETS(M,A,N)"
#>
#> $forecasts
#> $forecasts$arima
#> [,1] [,2]
#> [1,] 5486.10 4230
#> [2,] 6035.21 4230
#> [3,] 6584.32 4230
#> [4,] 7133.43 4230
#> [5,] 7682.54 4230
#> [6,] 8231.65 4230
#>
#> $forecasts$ets
#> [,1] [,2]
#> [1,] 5486.429 4347.678
#> [2,] 6035.865 4465.365
#> [3,] 6585.301 4583.052
#> [4,] 7134.737 4700.738
#> [5,] 7684.173 4818.425
#> [6,] 8233.609 4936.112
#>
#> $forecasts$rw
#> [,1] [,2]
#> [1,] 4936.99 4230
#> [2,] 4936.99 4230
#> [3,] 4936.99 4230
#> [4,] 4936.99 4230
#> [5,] 4936.99 4230
#> [6,] 4936.99 4230
#>
#> $forecasts$rwd
#> [,1] [,2]
#> [1,] 5244.40 4402.227
#> [2,] 5551.81 4574.454
#> [3,] 5859.22 4746.681
#> [4,] 6166.63 4918.908
#> [5,] 6474.04 5091.135
#> [6,] 6781.45 5263.362
#>
#> $forecasts$theta
#> [,1] [,2]
#> [1,] 5085.07 4321.416
#> [2,] 5233.19 4412.843
#> [3,] 5381.31 4504.269
#> [4,] 5529.43 4595.696
#> [5,] 5677.55 4687.122
#> [6,] 5825.67 4778.549
#>
#> $forecasts$nn
#> [,1] [,2]
#> [1,] 5513.254 4791.525
#> [2,] 6072.331 5061.562
#> [3,] 6559.748 5152.046
#> [4,] 6937.694 5177.808
#> [5,] 7200.498 5184.764
#> [6,] 7368.014 5186.615
4. Construct a dataframe of input:features and output:lables to train a random forest
prepare_trainingset
can be used to create a data frame of
input:features and output: labels.
# steps 3 and 4 applied to yearly series of M1 competition
data(M1)
yearly_m1 <- subset(M1, "yearly")
accuracy_m1 <- fcast_accuracy(tslist=yearly_m1, models= c("arima","ets","rw","rwd", "theta", "nn"), database ="M1", cal_MASE, h=6, length_out = 1, fcast_save = TRUE)
features_m1 <- cal_features(yearly_m1, database="M1", h=6, highfreq = FALSE)
# prepare training set
prep_tset <- prepare_trainingset(accuracy_set = accuracy_m1, feature_set = features_m1)
# provides the training set to build a rf classifier
head(prep_tset$trainingset)
#> # A tibble: 6 x 26
#> entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.442 0.0400 0.977 0.985 0.985 0.00000132 4.46 0.705 -0.0603
#> 2 0.363 0.0790 0.894 0.988 0.989 0.00000154 4.47 0.613 0.272
#> 3 0.379 0.0160 0.858 0.987 0.989 0.00000113 4.60 0.695 0.172
#> 4 0.363 0.00201 1.32 0.982 0.957 0.00000896 4.48 0.0735 -0.396
#> 5 0.156 0.00112 0.446 0.993 0.973 0.00000180 5.77 1.21 0.0113
#> 6 0.441 0.00774 0.578 0.986 0.975 0.00000331 4.75 0.748 -0.385
#> # … with 17 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> # y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> # lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
#> # diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>,
#> # classlabels <chr>
# provides additional information about the fitted models
head(prep_tset$modelinfo)
#> # A tibble: 6 x 4
#> ARIMA_name ETS_name min_label model_names
#> <chr> <chr> <chr> <chr>
#> 1 ARIMA(0,1,0) with drift ETS(A,A,N) ets ETS(A,A,N)
#> 2 ARIMA(0,1,1) with drift ETS(M,A,N) rwd rwd
#> 3 ARIMA(0,1,2) with drift ETS(M,A,N) ets ETS(M,A,N)
#> 4 ARIMA(1,1,0) with drift ETS(M,A,N) rwd rwd
#> 5 ARIMA(0,1,1) with drift ETS(M,A,N) arima ARIMA(0,1,1) with drift
#> 6 ARIMA(1,1,0) with drift ETS(M,A,N) ets ETS(M,A,N)
5. Train a random forest and predict class labels for new series (FFORMS: online phase)
build_rf
in the seer
package enables the training of a random forest
model and predict class labels (“best” forecast-model) for new time
series. In the following example we use only yearly series of the M1 and
M3 competitions to illustrate the code. A random forest classifier is
build based on the yearly series on M1 data and predicted class labels
for yearly series in the M3 competition. Users can further add the
features and classlabel information calculated based on the simulated
time
series.
rf <- build_rf(training_set = prep_tset$trainingset, testset=M3yearly_features, rf_type="rcp", ntree=100, seed=1, import=FALSE, mtry = 8)
#> Warning in if (testset == FALSE) {: the condition has length > 1 and only the
#> first element will be used
# to get the predicted class labels
predictedlabels_m3 <- rf$predictions
table(predictedlabels_m3)
#> predictedlabels_m3
#> ARIMA ARMA/AR/MA ETS-dampedtrend
#> 67 1 0
#> ETS-notrendnoseasonal ETS-trend nn
#> 4 16 8
#> rw rwd theta
#> 3 532 8
#> wn
#> 6
# to obtain the random forest for future use
randomforest <- rf$randomforest
6. Generate point foecasts and 95% prediction intervals
rf_forecast
function can be used to generate point forecasts and 95%
prediction intervals based on the predicted class labels obtained in
step
5.
forecasts <- rf_forecast(predictions=predictedlabels_m3[1:2], tslist=yearly_m3[1:2], database="M3", function_name="cal_MASE", h=6, accuracy=TRUE)
# to obtain point forecasts
forecasts$mean
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 5486.100 6035.210 6584.320 7133.430 7682.540 8231.650
#> [2,] 4402.227 4574.454 4746.681 4918.908 5091.135 5263.362
# to obtain lower boundary of 95% prediction intervals
forecasts$lower
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 5298.756 5616.295 5883.342 6107.303 6293.158 6444.500
#> [2,] 2941.377 2430.512 2028.738 1677.572 1355.680 1052.743
# to obtain upper boundary of 95% prediction intervals
forecasts$upper
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 5673.444 6454.125 7285.298 8159.557 9071.922 10018.80
#> [2,] 5863.077 6718.396 7464.623 8160.243 8826.589 9473.98
# to obtain MASE
forecasts$accuracy
#> [1] 1.5669735 0.6123443
Calculation of features for daily series
# install.packages("https://github.com/carlanetto/M4comp2018/releases/download/0.2.0/M4comp2018_0.2.0.tar.gz",
# repos=NULL)
library(M4comp2018)
data(M4)
# extract first two daily time series
M4_daily <- Filter(function(l) l$period == "Daily", M4)
# convert daily series into msts objects
M4_daily_msts <- lapply(M4_daily, function(temp){
temp$x <- convert_msts(temp$x, "daily")
return(temp)
})
# calculate features
seer::cal_features(M4_daily_msts, seasonal=TRUE, h=14, m=7, lagmax=8L, database="M4", highfreq=TRUE)
#> # A tibble: 4,227 x 26
#> entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.00950 0.00214 0.621 1.00 0.993 1.09e-10 31.1 3.09 0.976
#> 2 0.211 0.331 0.446 1.00 0.865 2.53e- 8 24.7 1.35 0.986
#> 3 0.610 0.755 0.761 0.999 0.917 4.49e- 6 3.82 4.89 0.318
#> 4 0.741 0.168 0.821 0.996 0.841 3.86e- 6 1.87 6.38 0.290
#> 5 0.281 0.0140 0.991 1.00 0.988 4.64e- 8 11.3 0.878 0.376
#> 6 0.0430 0.00136 0.242 1.00 0.989 1.90e-10 29.8 8.27 0.973
#> 7 0.412 0.247 0.697 0.999 0.845 2.38e- 8 24.1 1.96 0.809
#> 8 0.141 0.0189 1.01 1.00 0.968 2.31e- 9 30.1 -4.98 0.963
#> 9 0.213 0.0275 1.07 1.00 0.954 4.69e- 9 29.3 -6.67 0.963
#> 10 0.438 0.00110 0.974 1.00 0.989 8.77e-10 18.3 -3.60 0.346
#> # … with 4,217 more rows, and 17 more variables: y_acf1 <dbl>,
#> # diff1y_acf1 <dbl>, diff2y_acf1 <dbl>, y_pacf5 <dbl>, diff1y_pacf5 <dbl>,
#> # diff2y_pacf5 <dbl>, nonlinearity <dbl>, seas_pacf <dbl>,
#> # seasonal_strength1 <dbl>, seasonal_strength2 <dbl>, sediff_acf1 <dbl>,
#> # sediff_seacf1 <dbl>, sediff_acf5 <dbl>, N <int>, y_acf5 <dbl>,
#> # diff1y_acf5 <dbl>, diff2y_acf5 <dbl>
Calculation of features for hourly series
data(M4)
# extract first two daily time series
M4_hourly <- Filter(function(l) l$period == "Hourly", M4)[1:2]
## convert data into msts object
hourlym4_msts <- lapply(M4_hourly, function(temp){
temp$x <- convert_msts(temp$x, "hourly")
return(temp)
})
cal_features(hourlym4_msts, seasonal=TRUE, m=24, lagmax=25L,
database="M4", highfreq = TRUE)
#> Warning: Unknown columns: `seasonal_strength`
#> # A tibble: 2 x 26
#> entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.282 0.0110 0.0899 0.999 0.626 1.92e-8 5.33 -3.51 0.958
#> 2 0.284 0.0505 0.109 0.999 0.790 6.39e-9 7.85 -0.152 0.974
#> # … with 17 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> # y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> # seas_pacf <dbl>, seasonal_strength1 <dbl>, seasonal_strength2 <dbl>,
#> # sediff_acf1 <dbl>, sediff_seacf1 <dbl>, sediff_acf5 <dbl>, N <int>,
#> # y_acf5 <dbl>, diff1y_acf5 <dbl>, diff2y_acf5 <dbl>
# extract only the values for two time series just for illustration
yearly_m1_features <- features_m1[1:2,]
votes.matrix <- predict(rf$randomforest, yearly_m1_features, type="vote")
tslist <- yearly_m1[1:2]
# To identify models and weights for forecast combination
models_and_weights_for_combinations <- fforms_ensemble(votes.matrix, threshold=0.6)
# Compute combination forecast
fforms_combinationforecast(models_and_weights_for_combinations, tslist, "M1", 6)
#> [[1]]
#> [[1]]$mean
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 556280.7 594333 632385.3 670437.6 708489.9 746542.3
#>
#> [[1]]$lower
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 495633.6 530117.6 561088.8 588269.7 611931.4 632551.3
#>
#> [[1]]$upper
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 616927.8 658548.4 703681.8 752605.5 805048.5 860533.2
#>
#>
#> [[2]]
#> [[2]]$mean
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 400921.2 417802.4 434683.5 451564.7 468445.9 485327.1
#>
#> [[2]]$lower
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 357623.1 355193.4 356354.4 359252.9 363194.2 367833.3
#>
#> [[2]]$upper
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 444219.3 480411.3 513012.7 543876.6 573697.6 602820.9