Code Contributor: Kaixin Liu
If you have any questions, feel free to contact me. My email is [email protected].
Please cite our paper if you choose to use our code.
@inproceedings{DBLP:***,
author = {Kaixin Liu and
Sibo Wang and
Yong Zhang and
Chunxiao Xing},
title = {An Efficient Algorithm for Distance-based Structural Graph Clustering},
journal = {PACMMOD},
volume = {1},
number = {45},
pages = {**--**},
year = {2023},
doi = {10.1145/3588725},
}
- Ubuntu
- C++ 14
- GCC 4.8
- Boost
- cmake
$ cmake .
$ make
./Distance_SCAN_SIGMOD --operation construct_sketches --algo <algorithm> [options]
-
algo: the type of all-distances bottom-k sketches
- distancescan_pst: storing all-distances sketches in persist search trees.
- distancescan: storing all-distances sketches by max-heaps.
-
options
- --prefix <prefix>
- --dataset <dataset>
- -d <the max distance threshold d>
- -k <the number of samples in bottom-k sketches>
-
Example
$ ./Distance_SCAN_SIGMOD --operation construct_sketches --dataset ego-facebook --algo distancescan -k 16 -d 0.4
./Distance_SCAN_SIGMOD --operation construct_sketches --algo <algorithm> [options]
-
algo: the algorithm you prefer to run.
- scan: SCAN for the distance-SCAN problem.
- pscan: pscan for the distance-SCAN problem.
- exact: the exact algorithm for the distance-SCAN problem.
- distancescan: our method.
-
options
- --prefix <prefix>
- --dataset <dataset>
- -d <the distance threshold d>
- -m <the max distance threshold d of sketches>
- -k <the number of samples in bottom-k sketches>
- -u <the threshold of structurally similar neighbors
$\mu$ > - -e <the similarity threshold
$\epsilon$ >
-
Example
$ ./Distance_SCAN_SIGMOD --operation query --dataset ego-facebook --algo distancescan -k 16 -u 5 -e 0.2 -d 0.3 -m 0.4
You can download from https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php and https://www.aminer.cn/data/?nav=openData#Topic-coauthor.