Skip to content

thu-west/DistanceSCAN.LKX

Repository files navigation

DistanceSCAN

Code Contributor: Kaixin Liu

If you have any questions, feel free to contact me. My email is [email protected].

Please cite our paper if you choose to use our code.

@inproceedings{DBLP:***,
  author    = {Kaixin Liu and
               Sibo Wang and
               Yong Zhang and
               Chunxiao Xing},
  title     = {An Efficient Algorithm for Distance-based Structural Graph Clustering},
  journal   = {PACMMOD},
  volume    = {1},
  number    = {45},
  pages     = {**--**},
  year      = {2023},
  doi       = {10.1145/3588725},
}

Tested Environment

  • Ubuntu
  • C++ 14
  • GCC 4.8
  • Boost
  • cmake

Compile

$ cmake .
$ make

Parameters

Construct Sketches

./Distance_SCAN_SIGMOD --operation construct_sketches --algo <algorithm> [options]
  • algo: the type of all-distances bottom-k sketches

    • distancescan_pst: storing all-distances sketches in persist search trees.
    • distancescan: storing all-distances sketches by max-heaps.
  • options

    • --prefix <prefix>
    • --dataset <dataset>
    • -d <the max distance threshold d>
    • -k <the number of samples in bottom-k sketches>
  • Example

$ ./Distance_SCAN_SIGMOD --operation construct_sketches --dataset ego-facebook --algo distancescan -k 16 -d 0.4 

Query

./Distance_SCAN_SIGMOD --operation construct_sketches --algo <algorithm> [options]
  • algo: the algorithm you prefer to run.

    • scan: SCAN for the distance-SCAN problem.
    • pscan: pscan for the distance-SCAN problem.
    • exact: the exact algorithm for the distance-SCAN problem.
    • distancescan: our method.
  • options

    • --prefix <prefix>
    • --dataset <dataset>
    • -d <the distance threshold d>
    • -m <the max distance threshold d of sketches>
    • -k <the number of samples in bottom-k sketches>
    • -u <the threshold of structurally similar neighbors $\mu$&gt;
    • -e <the similarity threshold $\epsilon$ >
  • Example

$ ./Distance_SCAN_SIGMOD --operation query --dataset ego-facebook --algo distancescan -k 16 -u 5 -e 0.2 -d 0.3 -m 0.4 

Data

You can download from https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php and https://www.aminer.cn/data/?nav=openData#Topic-coauthor.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published