Skip to content

Commit

Permalink
fix(autoware_lidar_transfusion): non-maximum suppression target decis…
Browse files Browse the repository at this point in the history
…ion logic (autowarefoundation#9612)

fix: non-maximum suppression target decision logic

Signed-off-by: Taekjin LEE <[email protected]>
  • Loading branch information
technolojin authored Dec 11, 2024
1 parent 01944ef commit da5284c
Show file tree
Hide file tree
Showing 6 changed files with 17 additions and 67 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
densification_world_frame_id: map
# post-process params
circle_nms_dist_threshold: 0.5
iou_nms_target_class_names: ["CAR"]
iou_nms_search_distance_2d: 10.0
iou_nms_threshold: 0.1
yaw_norm_thresholds: [0.3, 0.3, 0.3, 0.3, 0.0] # refers to the class_names
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,35 +28,12 @@ namespace autoware::lidar_transfusion
{
using autoware_perception_msgs::msg::DetectedObject;

enum class NMS_TYPE {
IoU_BEV
// IoU_3D
// Distance_2D
// Distance_3D
};

struct NMSParams
{
NMS_TYPE nms_type_{};
std::vector<std::string> target_class_names_{};
double search_distance_2d_{};
double iou_threshold_{};
// double distance_threshold_{};
};

std::vector<bool> classNamesToBooleanMask(const std::vector<std::string> & class_names)
{
std::vector<bool> mask;
constexpr std::size_t num_object_classification = 8;
mask.resize(num_object_classification);
for (const auto & class_name : class_names) {
const auto semantic_type = getSemanticType(class_name);
mask.at(semantic_type) = true;
}

return mask;
}

class NonMaximumSuppression
{
public:
Expand All @@ -65,14 +42,13 @@ class NonMaximumSuppression
std::vector<DetectedObject> apply(const std::vector<DetectedObject> &);

private:
bool isTargetLabel(const std::uint8_t);

bool isTargetPairObject(const DetectedObject &, const DetectedObject &);

Eigen::MatrixXd generateIoUMatrix(const std::vector<DetectedObject> &);

NMSParams params_{};
std::vector<bool> target_class_mask_{};

double search_distance_2d_sq_{};
};

} // namespace autoware::lidar_transfusion
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,22 +22,15 @@

namespace autoware::lidar_transfusion
{
using Label = autoware_perception_msgs::msg::ObjectClassification;

void NonMaximumSuppression::setParameters(const NMSParams & params)
{
assert(params.search_distance_2d_ >= 0.0);
assert(params.iou_threshold_ >= 0.0 && params.iou_threshold_ <= 1.0);

params_ = params;
target_class_mask_ = classNamesToBooleanMask(params.target_class_names_);
}

bool NonMaximumSuppression::isTargetLabel(const uint8_t label)
{
if (label >= target_class_mask_.size()) {
return false;
}
return target_class_mask_.at(label);
search_distance_2d_sq_ = params.search_distance_2d_ * params.search_distance_2d_;
}

bool NonMaximumSuppression::isTargetPairObject(
Expand All @@ -48,15 +41,15 @@ bool NonMaximumSuppression::isTargetPairObject(
const auto label2 =
autoware::object_recognition_utils::getHighestProbLabel(object2.classification);

if (isTargetLabel(label1) && isTargetLabel(label2)) {
return true;
// if labels are not the same, and one of them is pedestrian, do not suppress
if (label1 != label2 && (label1 == Label::PEDESTRIAN || label2 == Label::PEDESTRIAN)) {
return false;
}

const auto search_sqr_dist_2d = params_.search_distance_2d_ * params_.search_distance_2d_;
const auto sqr_dist_2d = autoware::universe_utils::calcSquaredDistance2d(
autoware::object_recognition_utils::getPose(object1),
autoware::object_recognition_utils::getPose(object2));
return sqr_dist_2d <= search_sqr_dist_2d;
return sqr_dist_2d <= search_distance_2d_sq_;
}

Eigen::MatrixXd NonMaximumSuppression::generateIoUMatrix(
Expand All @@ -73,14 +66,12 @@ Eigen::MatrixXd NonMaximumSuppression::generateIoUMatrix(
continue;
}

if (params_.nms_type_ == NMS_TYPE::IoU_BEV) {
const double iou = autoware::object_recognition_utils::get2dIoU(target_obj, source_obj);
triangular_matrix(target_i, source_i) = iou;
// NOTE: If the target object has any objects with iou > iou_threshold, it
// will be suppressed regardless of later results.
if (iou > params_.iou_threshold_) {
break;
}
const double iou = autoware::object_recognition_utils::get2dIoU(target_obj, source_obj);
triangular_matrix(target_i, source_i) = iou;
// NOTE: If the target object has any objects with iou > iou_threshold, it
// will be suppressed regardless of later results.
if (iou > params_.iou_threshold_) {
break;
}
}
}
Expand All @@ -97,10 +88,9 @@ std::vector<DetectedObject> NonMaximumSuppression::apply(
output_objects.reserve(input_objects.size());
for (std::size_t i = 0; i < input_objects.size(); ++i) {
const auto value = iou_matrix.row(i).maxCoeff();
if (params_.nms_type_ == NMS_TYPE::IoU_BEV) {
if (value <= params_.iou_threshold_) {
output_objects.emplace_back(input_objects.at(i));
}

if (value <= params_.iou_threshold_) {
output_objects.emplace_back(input_objects.at(i));
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,15 +48,6 @@
"default": 0.5,
"minimum": 0.0
},
"iou_nms_target_class_names": {
"type": "array",
"items": {
"type": "string"
},
"description": "An array of class names to be target in NMS.",
"default": ["CAR"],
"uniqueItems": true
},
"iou_nms_search_distance_2d": {
"type": "number",
"description": "A maximum distance value to search the nearest objects.",
Expand Down Expand Up @@ -95,7 +86,6 @@
"densification_num_past_frames",
"densification_world_frame_id",
"circle_nms_dist_threshold",
"iou_nms_target_class_names",
"iou_nms_search_distance_2d",
"iou_nms_threshold",
"yaw_norm_thresholds",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,9 +65,6 @@ LidarTransfusionNode::LidarTransfusionNode(const rclcpp::NodeOptions & options)
static_cast<float>(this->declare_parameter<double>("circle_nms_dist_threshold", descriptor));
{ // IoU NMS
NMSParams p;
p.nms_type_ = NMS_TYPE::IoU_BEV;
p.target_class_names_ =
this->declare_parameter<std::vector<std::string>>("iou_nms_target_class_names", descriptor);
p.search_distance_2d_ =
this->declare_parameter<double>("iou_nms_search_distance_2d", descriptor);
p.iou_threshold_ = this->declare_parameter<double>("iou_nms_threshold", descriptor);
Expand Down
2 changes: 0 additions & 2 deletions perception/autoware_lidar_transfusion/test/test_nms.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,6 @@ TEST(NonMaximumSuppressionTest, Apply)
autoware::lidar_transfusion::NMSParams params;
params.search_distance_2d_ = 1.0;
params.iou_threshold_ = 0.2;
params.nms_type_ = autoware::lidar_transfusion::NMS_TYPE::IoU_BEV;
params.target_class_names_ = {"CAR"};
nms.setParameters(params);

std::vector<autoware::lidar_transfusion::DetectedObject> input_objects(4);
Expand Down

0 comments on commit da5284c

Please sign in to comment.