Skip to content

Commit

Permalink
fix(multi_object_tracker): mot multi-step prediction is not work as i…
Browse files Browse the repository at this point in the history
…ntended (autowarefoundation#6611)

* bugfix: mot multi-step prediction is not work as intended. back to one-step prediction.

Signed-off-by: Taekjin LEE <[email protected]>

* fix: remove comment-out codes

Signed-off-by: Taekjin LEE <[email protected]>

* fix: prediction to use variable kalman filter

a bug was found on `predictStateStep` methods

* intention: predict the future state of the variable kalman filter `ekf`
* bug: using the member kalman filter `ekf_`
* fix: get the state vector from the variable kalman filter `ekf`

Signed-off-by: Taekjin LEE <[email protected]>

---------

Signed-off-by: Taekjin LEE <[email protected]>
  • Loading branch information
technolojin committed Mar 19, 2024
1 parent 54a22e5 commit f2f6cbd
Show file tree
Hide file tree
Showing 6 changed files with 27 additions and 28 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ class MultiObjectTracker : public rclcpp::Node
const autoware_auto_perception_msgs::msg::DetectedObject & object, const rclcpp::Time & time,
const geometry_msgs::msg::Transform & self_transform) const;

void publish(const rclcpp::Time & time);
void publish(const rclcpp::Time & time) const;
inline bool shouldTrackerPublish(const std::shared_ptr<const Tracker> tracker) const;
};

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -441,7 +441,7 @@ inline bool MultiObjectTracker::shouldTrackerPublish(
return true;
}

void MultiObjectTracker::publish(const rclcpp::Time & time)
void MultiObjectTracker::publish(const rclcpp::Time & time) const
{
const auto subscriber_count = tracked_objects_pub_->get_subscription_count() +
tracked_objects_pub_->get_intra_process_subscription_count();
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -317,7 +317,7 @@ bool BicycleMotionModel::predictStateStep(const double dt, KalmanFilter & ekf) c

// Current state vector X t
Eigen::MatrixXd X_t(DIM, 1);
getStateVector(X_t);
ekf.getX(X_t);

const double cos_yaw = std::cos(X_t(IDX::YAW) + X_t(IDX::SLIP));
const double sin_yaw = std::sin(X_t(IDX::YAW) + X_t(IDX::SLIP));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -272,7 +272,7 @@ bool CTRVMotionModel::predictStateStep(const double dt, KalmanFilter & ekf) cons

// Current state vector X t
Eigen::MatrixXd X_t(DIM, 1);
getStateVector(X_t);
ekf.getX(X_t);

const double cos_yaw = std::cos(X_t(IDX::YAW));
const double sin_yaw = std::sin(X_t(IDX::YAW));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@ bool CVMotionModel::predictStateStep(const double dt, KalmanFilter & ekf) const

// Current state vector X t
Eigen::MatrixXd X_t(DIM, 1);
getStateVector(X_t);
ekf.getX(X_t);

// Predict state vector X t+1
Eigen::MatrixXd X_next_t(DIM, 1); // predicted state
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,17 +46,19 @@ bool MotionModel::predictState(const rclcpp::Time & time)
if (dt < 0.0) {
return false;
}
if (dt < 1e-6 /*1usec*/) {
return true;
}

// multi-step prediction
// if dt is too large, shorten dt and repeat prediction
const uint32_t repeat = std::ceil(dt / dt_max_);
const uint32_t repeat = std::floor(dt / dt_max_) + 1;
const double dt_ = dt / repeat;
for (uint32_t i = 0; i < repeat; ++i) {
if (!predictStateStep(dt_, ekf_)) {
return false;
}
// add interval to last_update_time_
if (!predictStateStep(dt_, ekf_)) return false;
last_update_time_ += rclcpp::Duration::from_seconds(dt_);
}
// update last_update_time_ to the estimation time
// reset the last_update_time_ to the prediction time
last_update_time_ = time;
return true;
}
Expand All @@ -67,25 +69,22 @@ bool MotionModel::getPredictedState(
// check if the state is initialized
if (!checkInitialized()) return false;

// copy the predicted state and covariance
KalmanFilter tmp_ekf_for_no_update = ekf_;

double dt = getDeltaTime(time);
if (dt < 0.0) {
// a naive way to handle the case when the required prediction time is in the past
dt = 0.0;
const double dt = getDeltaTime(time);
if (dt < 1e-6 /*1usec*/) {
// no prediction, return the current state
ekf_.getX(X);
ekf_.getP(P);
return true;
}

// predict only when dt is small enough
if (0.001 /*1msec*/ < dt) {
// if dt is too large, shorten dt and repeat prediction
const uint32_t repeat = std::ceil(dt / dt_max_);
const double dt_ = dt / repeat;
for (uint32_t i = 0; i < repeat; ++i) {
if (!predictStateStep(dt_, tmp_ekf_for_no_update)) {
return false;
}
}
// copy the predicted state and covariance
KalmanFilter tmp_ekf_for_no_update = ekf_;
// multi-step prediction
// if dt is too large, shorten dt and repeat prediction
const uint32_t repeat = std::floor(dt / dt_max_) + 1;
const double dt_ = dt / repeat;
for (uint32_t i = 0; i < repeat; ++i) {
if (!predictStateStep(dt_, tmp_ekf_for_no_update)) return false;
}
tmp_ekf_for_no_update.getX(X);
tmp_ekf_for_no_update.getP(P);
Expand Down

0 comments on commit f2f6cbd

Please sign in to comment.