forked from autowarefoundation/autoware
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: add ansible installation, update manual artifact download proce…
…ss (autowarefoundation#4675) Signed-off-by: M. Fatih Cırıt <[email protected]>
- Loading branch information
Showing
4 changed files
with
51 additions
and
154 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,31 @@ | ||
# Ansible Collection - autoware.dev_env | ||
|
||
This collection contains the playbooks to set up the development environment for Autoware. | ||
|
||
## Set up a development environment | ||
|
||
### Ansible installation | ||
|
||
```bash | ||
# Remove apt installed ansible (In Ubuntu 22.04, ansible the version is old) | ||
sudo apt-get purge ansible | ||
|
||
# Install pipx | ||
sudo apt-get -y update | ||
sudo apt-get -y install pipx | ||
|
||
# Add pipx to the system PATH | ||
python3 -m pipx ensurepath | ||
|
||
# Install ansible | ||
pipx install --include-deps --force "ansible==6.*" | ||
``` | ||
|
||
### Install ansible collections | ||
|
||
This step should be repeated when a new playbook is added. | ||
|
||
```bash | ||
cd ~/autoware # The root directory of the cloned repository | ||
ansible-galaxy collection install -f -r "ansible-galaxy-requirements.yaml" | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
- name: Download Autoware artifacts | ||
hosts: localhost | ||
roles: | ||
- autoware.dev_env.artifacts |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,144 +1,32 @@ | ||
# Autoware artifacts | ||
|
||
The Autoware perception stack uses models for inference. These models are automatically downloaded if using `ansible`, but they can also be downloaded manually. | ||
The Autoware perception stack uses models for inference. These models are automatically downloaded as part of the `setup-dev-env.sh` script. | ||
|
||
## Download instructions | ||
|
||
The artifacts files are stored in a common location, hosted by Web.Auto | ||
|
||
Any tool that can download files from the web (e.g. `wget` or `curl`) is the only requirement for downloading these files: | ||
|
||
```console | ||
# yabloc_pose_initializer | ||
|
||
$ mkdir -p ~/autoware_data/yabloc_pose_initializer/ | ||
$ wget -P ~/autoware_data/yabloc_pose_initializer/ \ | ||
https://s3.ap-northeast-2.wasabisys.com/pinto-model-zoo/136_road-segmentation-adas-0001/resources.tar.gz | ||
|
||
|
||
# image_projection_based_fusion | ||
|
||
$ mkdir -p ~/autoware_data/image_projection_based_fusion/ | ||
$ wget -P ~/autoware_data/image_projection_based_fusion/ \ | ||
https://awf.ml.dev.web.auto/perception/models/pointpainting/v4/pts_voxel_encoder_pointpainting.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/pointpainting/v4/pts_backbone_neck_head_pointpainting.onnx | ||
|
||
|
||
# lidar_apollo_instance_segmentation | ||
|
||
$ mkdir -p ~/autoware_data/lidar_apollo_instance_segmentation/ | ||
$ wget -P ~/autoware_data/lidar_apollo_instance_segmentation/ \ | ||
https://awf.ml.dev.web.auto/perception/models/lidar_apollo_instance_segmentation/vlp-16.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/lidar_apollo_instance_segmentation/hdl-64.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/lidar_apollo_instance_segmentation/vls-128.onnx | ||
|
||
|
||
# lidar_centerpoint | ||
|
||
$ mkdir -p ~/autoware_data/lidar_centerpoint/ | ||
$ wget -P ~/autoware_data/lidar_centerpoint/ \ | ||
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_voxel_encoder_centerpoint.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_backbone_neck_head_centerpoint.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_voxel_encoder_centerpoint_tiny.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_backbone_neck_head_centerpoint_tiny.onnx | ||
|
||
|
||
# tensorrt_yolox | ||
|
||
$ mkdir -p ~/autoware_data/tensorrt_yolox/ | ||
$ wget -P ~/autoware_data/tensorrt_yolox/ \ | ||
https://awf.ml.dev.web.auto/perception/models/yolox-tiny.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/yolox-sPlus-opt.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/yolox-sPlus-opt.EntropyV2-calibration.table \ | ||
https://awf.ml.dev.web.auto/perception/models/object_detection_yolox_s/v1/yolox-sPlus-T4-960x960-pseudo-finetune.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/object_detection_yolox_s/v1/yolox-sPlus-T4-960x960-pseudo-finetune.EntropyV2-calibration.table \ | ||
https://awf.ml.dev.web.auto/perception/models/label.txt | ||
|
||
|
||
# traffic_light_classifier | ||
|
||
$ mkdir -p ~/autoware_data/traffic_light_classifier/ | ||
$ wget -P ~/autoware_data/traffic_light_classifier/ \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_mobilenetv2_batch_1.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_mobilenetv2_batch_4.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_mobilenetv2_batch_6.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_efficientNet_b1_batch_1.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_efficientNet_b1_batch_4.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_efficientNet_b1_batch_6.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/lamp_labels.txt \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v3/ped_traffic_light_classifier_mobilenetv2_batch_1.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v3/ped_traffic_light_classifier_mobilenetv2_batch_4.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v3/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v3/lamp_labels_ped.txt | ||
The models are hosted by Web.Auto. | ||
|
||
Default `data_dir` location is `~/autoware_data`. | ||
|
||
## Download instructions | ||
|
||
# traffic_light_fine_detector | ||
|
||
$ mkdir -p ~/autoware_data/traffic_light_fine_detector/ | ||
$ wget -P ~/autoware_data/traffic_light_fine_detector/ \ | ||
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v3/tlr_car_ped_yolox_s_batch_1.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v3/tlr_car_ped_yolox_s_batch_4.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v3/tlr_car_ped_yolox_s_batch_6.onnx \ | ||
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v3/tlr_labels.txt | ||
|
||
|
||
# tvm_utility | ||
|
||
$ mkdir -p ~/autoware_data/tvm_utility/models/yolo_v2_tiny | ||
$ wget -P ~/autoware_data/tvm_utility/ \ | ||
https://autoware-modelzoo.s3.us-east-2.amazonaws.com/models/3.0.0-20221221/yolo_v2_tiny-x86_64-llvm-3.0.0-20221221.tar.gz | ||
|
||
|
||
# lidar_centerpoint_tvm | ||
|
||
$ mkdir -p ~/autoware_data/lidar_centerpoint_tvm/models/centerpoint_encoder | ||
$ mkdir -p ~/autoware_data/lidar_centerpoint_tvm/models/centerpoint_backbone | ||
$ wget -P ~/autoware_data/lidar_centerpoint_tvm/ \ | ||
https://autoware-modelzoo.s3.us-east-2.amazonaws.com/models/3.0.0-20221221/centerpoint_encoder-x86_64-llvm-3.0.0-20221221.tar.gz \ | ||
https://autoware-modelzoo.s3.us-east-2.amazonaws.com/models/3.0.0-20221221/centerpoint_backbone-x86_64-llvm-3.0.0-20221221.tar.gz | ||
|
||
### Requirements | ||
|
||
# lidar_apollo_segmentation_tvm | ||
Install ansible following the instructions in the [ansible installation guide](../../README.md#ansible-installation). | ||
|
||
$ mkdir -p ~/autoware_data/lidar_apollo_segmentation_tvm/models/baidu_cnn | ||
$ wget -P ~/autoware_data/lidar_apollo_segmentation_tvm/ \ | ||
https://autoware-modelzoo.s3.us-east-2.amazonaws.com/models/3.0.0-20221221/baidu_cnn-x86_64-llvm-3.0.0-20221221.tar.gz | ||
``` | ||
### Download artifacts | ||
|
||
After downloading you can check integrity of the files with `sha256sum`: | ||
#### Install ansible collections | ||
|
||
```console | ||
# | ||
$ cd ~/autoware_data/ | ||
$ wget -q -O - https://raw.githubusercontent.com/autowarefoundation/autoware/main/ansible/roles/artifacts/SHA256SUMS | sha256sum -c | ||
```bash | ||
cd ~/autoware # The root directory of the cloned repository | ||
ansible-galaxy collection install -f -r "ansible-galaxy-requirements.yaml" | ||
``` | ||
|
||
Extracting files: | ||
This step should be repeated when a new playbook is added. | ||
|
||
```console | ||
# yabloc_pose_initializer | ||
#### Run the playbook | ||
|
||
$ tar -xf ~/autoware_data/yabloc_pose_initializer/resources.tar.gz \ | ||
-C ~/autoware_data/yabloc_pose_initializer/ | ||
|
||
|
||
# tvm_utility | ||
|
||
$ tar -xf ~/autoware_data/tvm_utility/yolo_v2_tiny-x86_64-llvm-3.0.0-20221221.tar.gz \ | ||
-C ~/autoware_data/tvm_utility/models/yolo_v2_tiny/ | ||
|
||
|
||
# lidar_centerpoint_tvm | ||
|
||
$ tar -xf ~/autoware_data/lidar_centerpoint_tvm/centerpoint_encoder-x86_64-llvm-3.0.0-20221221.tar.gz \ | ||
-C ~/autoware_data/lidar_centerpoint_tvm/models/centerpoint_encoder | ||
$ tar -xf ~/autoware_data/lidar_centerpoint_tvm/centerpoint_backbone-x86_64-llvm-3.0.0-20221221.tar.gz \ | ||
-C ~/autoware_data/lidar_centerpoint_tvm/models/centerpoint_backbone | ||
|
||
|
||
# lidar_apollo_segmentation_tvm | ||
|
||
$ tar -xf ~/autoware_data/lidar_apollo_segmentation_tvm/baidu_cnn-x86_64-llvm-3.0.0-20221221.tar.gz \ | ||
-C ~/autoware_data/lidar_apollo_segmentation_tvm/models/baidu_cnn | ||
```bash | ||
ansible-playbook autoware.dev_env.download_artifacts -e "data_dir=$HOME/autoware_data" --ask-become-pass | ||
``` | ||
|
||
This will download and extract the artifacts to the specified directory and validate the checksums. |
This file was deleted.
Oops, something went wrong.