Skip to content

Preprocessing and visualization tools for THÖR-MAGNI dataset.

License

Notifications You must be signed in to change notification settings

tmralmeida/thor-magni-tools

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

thor-magni-tools: Tools for Preprocessing and Filtering THÖR ̵ MAGNI Human Motion Dataset

Project Page Paper Dashboard Dataset



THÖR-MAGNI provides human gaze data aligned with 6D motion and human-robot interactions.

Install

Install miniconda. Then, you can install all packages required by running:

conda env create -f environment.yml && conda activate thor-magni-tools

Running

Download the dataset

First, the most important step is to download the dataset from zenodo. Run:

curl -O https://zenodo.org/records/10407223/files/THOR_MAGNI.zip\?download\=1 && unzip -r THOR_MAGNI.zip && rm -rf THOR_MAGNI.zip

The CSV files for each Scenario can be found in THOR_MAGNI\CSVs_Scenarios.

CSV headers checker

To check the alignment and consistency of headers in the csv files:

python -m thor_magni_tools.run_header_check --dir_path=PATH_TO_SCENARIO_FOLDER --sc_id=Scenario_1

Preprocessing

To preprocess the data with interpolation (and optional downsampling and moving average filter), first one should set the parameters in the cfg file and then run:

python -m thor_magni_tools.run_preprocessing 

If in_path is a folder, it will preprocess the files in the folder in parallel. After finishing, the files will be stored in the pre-specified output path with the format | time | frame_id | x | y | z | ag_id | agent_type, where ag_id is the helmet number and agent_type is the role of the participant.

Analysis

python -m thor_magni_tools.run_analysis --data_path=DATASET_FOLDER OR DATASET FILE --dataset DATASET_NAME 

Such that DATASET_NAME in {"thor_magni", "thor", "eth_ucy", "sdd", "atc"}.

Optional Arguments:

Parameter Default Description
--interpolation None used to preprocess the dataset. Max frames without tracking
--average_window None used to preprocess the dataset. Number of periods to average
--filtering_markers 3D-restoration filtering markers type used in THÖR/THÖR-MAGNI tracks

🚀 [New Feature 23/10/2024] Visualization of synchronized gazes and trajectory data

Synchronization visualization

Attention:

  • This is only available for the latest Zenodo version.
  • If you already have the `thor-magni-tools' conda environment installed, run:
conda activate thor-magni-tools && pip install opencv-python

To run the latest visualization tool, which allows you to view frame-by-frame the participant(s) wearing eye-tracking glasses, including their 6D head pose and 3D gaze (top), along with the corresponding 2D gaze (bottom), use the following command:

python -m thor_magni_tools.thor_magni_gazes.visualize --raw_file PATH_TO_CSV_RAW_FILE --max_nans_interpolate NUMBER_OF_MAX_QTM_FRAMES_TO_INTERPOLATE --visualization_step NUMBER_OF_FRAMES_LEAP_VISUALIZATION

Optional Arguments:

Parameter Default Description
--max_nans_interpolate 100 max QTM (trajectory) frames to interpolate
--visualization_step 10 visualization frames leap

About

Preprocessing and visualization tools for THÖR-MAGNI dataset.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published