A fast and flexible keyboard launcher
-
Updated
Nov 19, 2024 - C++
A fast and flexible keyboard launcher
中文语言理解测评基准 Chinese Language Understanding Evaluation Benchmark: datasets, baselines, pre-trained models, corpus and leaderboard
A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS, 海量中文预训练ALBERT模型
🧠💬 Articles I wrote about machine learning, archived from MachineCurve.com.
Open Source Pre-training Model Framework in PyTorch & Pre-trained Model Zoo
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
Language Understanding Evaluation benchmark for Chinese: datasets, baselines, pre-trained models,corpus and leaderboard
中文长文本分类、短句子分类、多标签分类、两句子相似度(Chinese Text Classification of Keras NLP, multi-label classify, or sentence classify, long or short),字词句向量嵌入层(embeddings)和网络层(graph)构建基类,FastText,TextCNN,CharCNN,TextRNN, RCNN, DCNN, DPCNN, VDCNN, CRNN, Bert, Xlnet, Albert, Attention, DeepMoji, HAN, 胶囊网络-CapsuleNet, Transformer-encode, Seq2seq, SWEM, LEAM, TextGCN
a fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU.
CLUENER2020 中文细粒度命名实体识别 Fine Grained Named Entity Recognition
Tencent Pre-training framework in PyTorch & Pre-trained Model Zoo
This repo contains a PyTorch implementation of a pretrained BERT model for multi-label text classification.
🤖 A PyTorch library of curated Transformer models and their composable components
高质量中文预训练模型集合:最先进大模型、最快小模型、相似度专门模型
自然语言处理工具Macropodus,基于Albert+BiLSTM+CRF深度学习网络架构,中文分词,词性标注,命名实体识别,新词发现,关键词,文本摘要,文本相似度,科学计算器,中文数字阿拉伯数字(罗马数字)转换,中文繁简转换,拼音转换。tookit(tool) of NLP,CWS(chinese word segnment),POS(Part-Of-Speech Tagging),NER(name entity recognition),Find(new words discovery),Keyword(keyword extraction),Summarize(text summarization),Sim(text similarity),Calculate(scientif…
PyTorch implementation for "Matching the Blanks: Distributional Similarity for Relation Learning" paper
Models to perform neural summarization (extractive and abstractive) using machine learning transformers and a tool to convert abstractive summarization datasets to the extractive task.
Add a description, image, and links to the albert topic page so that developers can more easily learn about it.
To associate your repository with the albert topic, visit your repo's landing page and select "manage topics."