BoxMOT: pluggable SOTA tracking modules for segmentation, object detection and pose estimation models
-
Updated
Dec 2, 2024 - Python
BoxMOT: pluggable SOTA tracking modules for segmentation, object detection and pose estimation models
This repository is based on shouxieai/tensorRT_Pro, with adjustments to support YOLOv8.
分别使用OpenCV、ONNXRuntime部署YOLOX+ByteTrack目标跟踪,包含C++和Python两个版本的程序
The project can achieve FCWS, LDWS, and LKAS functions solely using only visual sensors. using YOLOv5 / YOLOv5-lite / YOLOv6 / YOLOv7 / YOLOv8 / YOLOv9 / EfficientDet and Ultra-Fast-Lane-Detection-v2 .
基于TensorRT的C++高性能推理库,Yolov10, YoloPv2,Yolov5/7/X/8,RT-DETR,单目标跟踪OSTrack、LightTrack。
C++ implementation of ByteTrack that does not include an object detection algorithm.
Real-Time Face Recognition use SCRFD, ArcFace, ByteTrack and Similarity Measure
Integration of YOLOv9 with ByteTracker
Based on tensorrt v8.0+, deploy detect, pose, segment, tracking of YOLOv8 with C++ and python api.
Multi-thread tracking of YOLOv5 and ByteTrack implemented by C++, accelerated by TensorRT. YOLOv5 和 ByteTrack 的多线程追踪 C++ 实现, 使用 TensorRT 进行推理加速
Tracking-by-Detection形式のMOT(Multi Object Tracking)について、 DetectionとTrackingの処理を分離して寄せ集めたフレームワーク(Tracking-by-Detection method MOT(Multi Object Tracking) is a framework that separates the processing of Detection and Tracking.)
Анализ трафика на круговом движении с использованием компьютерного зрения
Car tracking and car counter implemented with YOLOX, ByteTrack and Pytorch.
Packaged version of the ByteTrack repository
ByteTrack-Eigen is a C++ implementation of the ByteTrack object tracking method, leveraging the Eigen library for high-performance matrix and vector operations.
juxtapose: Multi-Person Pose Tracking Inference SDK with RTMDet, YOLOv8, GDino, RTMPose (ONNX) & Trackers (ByteTrack & BotSORT) & Tapnet with custom ROIs + FastAPI GPU exe
This repository contains the code for training YOLOv5, YOLOv7, and YOLOv8 models for object detection using Python 3. Optimization of models with OpenVINO and Apache TVM, and tracking with ByteTrack and yolov8-pose.
Add a description, image, and links to the bytetrack topic page so that developers can more easily learn about it.
To associate your repository with the bytetrack topic, visit your repo's landing page and select "manage topics."