-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_screw_invariants_pose.py
183 lines (136 loc) · 6.09 KB
/
calculate_screw_invariants_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Calculate the invariants of a pose trajectory
# Import necessary modules
from invariants_py import data_handler as dh
import numpy as np
from invariants_py.reparameterization import interpT
from invariants_py.calculate_invariants.opti_calculate_screw_invariants_pose_fatrop import OCP_calc_pose
import matplotlib.pyplot as plt
from scipy.spatial.transform import Rotation as R
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
def load_obj_file(filepath):
"""
Load a .obj file and extract the vertices and faces.
Parameters:
filepath (str): Path to the .obj file.
Returns:
dict: A dictionary with two keys:
- 'vertices': A numpy array of shape (n, 3) containing the vertex coordinates.
- 'faces': A numpy array of shape (m, 3) containing the indices of vertices that form the faces.
"""
vertices = []
faces = []
# Open the .obj file
with open(filepath, 'r') as file:
for line in file:
# Process vertex lines
if line.startswith('v '):
# Extract the vertex coordinates and convert them to floats
vertex = [float(x) for x in line.strip().split()[1:]]
vertices.append(vertex)
# Process face lines
elif line.startswith('f '):
# Extract the vertex indices and convert them to integers (OBJ indices start at 1, so we subtract 1)
face = [int(x) for x in line.strip().split()[1:]]
faces.append(face)
# Convert lists to numpy arrays
vertices = np.array(vertices)
faces = np.array(faces)
return {
'vertices': vertices,
'faces': faces,
}
def plot_trajectory_kettle(T, title = ''):
"""
Plots the trajectory of a kettle in 3D space given a series of transformation matrices.
Parameters:
T (numpy.ndarray): An array of shape (N, 4, 4) representing a series of N transformation matrices.
Each transformation matrix represents the position and orientation of the kettle at a specific time.
"""
# Create a new figure for the 3D plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Extract the trajectory points from the transformation matrices
p = T[:, 0:3, 3]
ax.plot(p[:, 0], p[:, 1], p[:, 2], 'k')
# Load the kettle 3D model
kettle_location = dh.find_data_path('kettle.obj')
kettle = load_obj_file(kettle_location)
# Scale and calibrate the kettle model
scale = 1/1500
T_tot = np.eye(4)
T_tot[:3, :3] = R.from_euler('x', 100, degrees=True).as_matrix() @ R.from_euler('z', 180, degrees=True).as_matrix()
T_tot[:3, 3] = np.array([0, -0.07, -0.03])
# Apply scaling and initial transformation to the kettle vertices
kettle['vertices'] = kettle['vertices'] * scale
kettle['vertices'] = kettle['vertices'] @ T_tot[:3, :3].T + T_tot[:3, 3] @ T_tot[:3, :3].T
N = T.shape[0]
# Plot the kettle at specific keyframes along the trajectory
for k in [0, 1 + round(N / 4), 1 + round(2 * N / 4)]:
moved_vertices = kettle['vertices'] @ T[k, :3, :3].T + T[k, :3, 3]
poly3d = [[moved_vertices[j - 1, :] for j in face] for face in kettle['faces']]
ax.add_collection3d(Poly3DCollection(poly3d, facecolors=[0.5, 0.5, 1], edgecolors='none', alpha=1))
# Set plot labels and title
ax.set_title(title)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
# Set equal aspect ratio for the plot
plt.axis('equal')
ax.set_box_aspect([1, 1, 1])
def plot_screw_invariants(progress, invariants, title='Calculated Screw Invariants'):
"""
Plots screw invariants against progress.
Parameters:
progress (numpy.ndarray): 1D array representing the progress (e.g., time or geometric).
invariants (numpy.ndarray): Nx6 array of screw invariants .
title (str): The title of the plot window.
"""
plt.figure(num=title, figsize=(15, 13), dpi=120, facecolor='w', edgecolor='k')
titles = [
r'$\omega$',
r'$\omega_{\kappa}$',
r'$\omega_{\tau}$',
r'$v$',
r'$v_b$',
r'$v_t$'
]
for i in range(6):
plt.subplot(2, 3, i + 1)
plt.plot(progress, invariants[:, i])
plt.title(titles[i], fontsize=16)
plt.xlabel('Progress', fontsize=14)
plt.tight_layout()
def main():
"""
Main function to process and plot screw invariants of a demo pouring trajectory.
"""
# Close all existing plots
plt.close('all')
# Find the path to the data file
path_data = dh.find_data_path("pouring_segmentation.csv")
# Load the trajectory data from the file
T, timestamps = dh.read_pose_trajectory_from_data(path_data, scalar_last=False, dtype='csv')
# Define resampling interval (20Hz)
dt = 0.05 # [s]
# Compute the number of new samples
N = int(1 + np.floor(timestamps[-1] / dt))
print(f'Number of samples: {N}')
# Generate new equidistant time vector
time_new = np.linspace(0, timestamps[-1], N)
# Interpolate pose matrices to new time vector
T = interpT(time_new, timestamps, T)
# Plot the input trajectory
plot_trajectory_kettle(T, 'Input Trajectory')
# Initialize OCP object and calculate pose
OCP = OCP_calc_pose(N, rms_error_traj_pos = 1e-3, rms_error_traj_rot= 1e-2, solver='fatrop', bool_unsigned_invariants=False)
# Calculate screw invariants and other outputs
U, T_sol, T_isa = OCP.calculate_invariants(T, dt)
# Plot the reconstructed trajectory
plot_trajectory_kettle(T_sol, 'Reconstructed Trajectory')
# Plot the screw invariants
plot_screw_invariants(time_new, U)
# Display the plots if not running in a non-interactive backend
if plt.get_backend() != 'agg':
plt.show()
if __name__ == "__main__":
main()