-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Dependence on ensemble - failure of HSIC (#24)
* Dependence on ensemble - failure of HSIC * Update notebook * Notebook cosmetics
- Loading branch information
1 parent
dfe1518
commit f78492b
Showing
2 changed files
with
318 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,302 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "802e8c73", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"import seaborn as sns\n", | ||
"import itertools\n", | ||
"from sklearn.metrics import adjusted_mutual_info_score\n", | ||
"\n", | ||
"\n", | ||
"from hisel import select, hsic\n", | ||
"from hisel.select import FeatureType, HSICSelector as Selector" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "798f7c6d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"k = 5\n", | ||
"n = 2000\n", | ||
"d = 20" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "50b99be8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x0 = np.random.randint(k, size=(n, 1))\n", | ||
"x1 = np.random.randint(k, size=(n, 1))\n", | ||
"ms = np.random.randint(low=2, high=20, size = d-2)\n", | ||
"others = [np.random.choice(m, size=(n, 1)) for m in ms]\n", | ||
"all_ = np.concatenate(\n", | ||
" [x0, x1] + others,\n", | ||
" axis=1\n", | ||
")\n", | ||
"y = np.asarray(x0 == x1, dtype=int) # k + x0 - x1 # np.asarray(x0 == x1, dtype=int)\n", | ||
"permuter = np.random.permutation(np.eye(d, dtype=int).T).T\n", | ||
"x = np.array(all_ @ permuter, dtype=int)\n", | ||
"expected_features = [np.argmax(permuter[0, :]), np.argmax(permuter[1, :])]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e6236e9e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"assert np.all(x[:, expected_features[0]] == x0[:, 0])\n", | ||
"assert np.all(x[:, expected_features[1]] == x1[:, 0])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f83edaef", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sns.scatterplot(x = x0[:, 0] - x1[:, 0], y = y[:, 0])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "140b9f88", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"xdf = pd.DataFrame(x, columns = [f'x{i}' for i in range(d)])\n", | ||
"ydf = pd.Series(y[:, 0], name='y')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e37502d7", | ||
"metadata": {}, | ||
"source": [ | ||
"### Selection with marginal 1D ksg mutual info" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "139b18ff", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ksgselection, mis = select.ksgmi(xdf, ydf, threshold=0.01)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5ffca204", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(f'Expected features: {sorted(expected_features)}')\n", | ||
"print(f'Marginal KSG selection: {sorted(ksgselection)}')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c8906000", | ||
"metadata": {}, | ||
"source": [ | ||
"### Selection with HSIC Lasso" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1487ff0e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"selector = Selector(x, y, xfeattype=FeatureType.DISCR, yfeattype=FeatureType.DISCR)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "afab6f16", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"batch_size = n // 10\n", | ||
"minibatch_size = 200\n", | ||
"number_of_epochs = 3\n", | ||
"threshold = .0\n", | ||
"device = None # run on CPU" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "01efe57c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"hsiclasso_selection = selector.select(\n", | ||
" number_of_features=2,\n", | ||
" batch_size=batch_size,\n", | ||
" minibatch_size=minibatch_size,\n", | ||
" number_of_epochs=number_of_epochs,\n", | ||
" device=device\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "97929ada", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(f'Expected features: {sorted(expected_features)}')\n", | ||
"print(f'HSIC Lasso selection: {sorted(hsiclasso_selection)}')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "d88d85c5", | ||
"metadata": {}, | ||
"source": [ | ||
"### Confirm that HSIC_b correctly assigns highest dependence to the correct selection" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "38056f04", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"correct_dependence = n * n * hsic.hsic_b(\n", | ||
" x[:, list(expected_features)],\n", | ||
" y\n", | ||
")\n", | ||
"nsel = np.random.randint(low=1, high=d)\n", | ||
"random_selection = np.random.choice(list(range(d)), replace=False, size=nsel)\n", | ||
"random_dependence = n * n * hsic.hsic_b(\n", | ||
" x[:, list(random_selection)],\n", | ||
" y\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "92bc809f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(f'HSIC-estimated dependence between correct selection and target: {correct_dependence}')\n", | ||
"print(f'HSIC-estimated dependence between random selection and target: {random_dependence}')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "beb34ecd", | ||
"metadata": {}, | ||
"source": [ | ||
"### Selection with 2D discrete mutual information" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3d1459fb", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def onedimlabel(x):\n", | ||
" assert x.ndim == 2\n", | ||
" ns = np.amax(x, axis=0)\n", | ||
" res = np.array(x[:, 0], copy=True)\n", | ||
" m = 1\n", | ||
" for i in range(1, x.shape[1]):\n", | ||
" m *= max(1, ns[i-1])\n", | ||
" res += (1+m) * x[:, i]\n", | ||
" return res" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "16a8e7f5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"l = 2\n", | ||
"miscores = {subset: \n", | ||
" adjusted_mutual_info_score(onedimlabel(x[:, list(subset)]), y[:, 0])\n", | ||
" for subset in itertools.combinations(list(range(d)), l)\n", | ||
" \n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "168eb38b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"s = (0,1)\n", | ||
"mi = 0\n", | ||
"for k, v in miscores.items():\n", | ||
" if v > mi:\n", | ||
" s = k\n", | ||
" mi = v\n", | ||
"twod_mi_selection = s" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a14eb4e9", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(f'Expected features: {sorted(expected_features)}')\n", | ||
"print(f'2D discrete MI selection: {sorted(twod_mi_selection)}')" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "hiselc", | ||
"language": "python", | ||
"name": "hiselc" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.16" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |