Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Build: Update main branch post 24.10 release #7754

Merged
merged 6 commits into from
Nov 1, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Dockerfile.sdk
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
#

# Base image on the minimum Triton container
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.09-py3-min
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.10-py3-min

ARG TRITON_CLIENT_REPO_SUBDIR=clientrepo
ARG TRITON_PA_REPO_SUBDIR=perfanalyzerrepo
Expand Down
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@

>[!WARNING]
>You are currently on the `main` branch which tracks under-development progress
>towards the next release. The current release is version [2.50.0](https://github.com/triton-inference-server/server/releases/latest)
>and corresponds to the 24.09 container release on NVIDIA GPU Cloud (NGC).
>towards the next release. The current release is version [2.51.0](https://github.com/triton-inference-server/server/releases/latest)
>and corresponds to the 24.10 container release on NVIDIA GPU Cloud (NGC).

Triton Inference Server is an open source inference serving software that
streamlines AI inferencing. Triton enables teams to deploy any AI model from
Expand Down Expand Up @@ -91,16 +91,16 @@ Inference Server with the

```bash
# Step 1: Create the example model repository
git clone -b r24.09 https://github.com/triton-inference-server/server.git
git clone -b r24.10 https://github.com/triton-inference-server/server.git
cd server/docs/examples
./fetch_models.sh

# Step 2: Launch triton from the NGC Triton container
docker run --gpus=1 --rm --net=host -v ${PWD}/model_repository:/models nvcr.io/nvidia/tritonserver:24.09-py3 tritonserver --model-repository=/models
docker run --gpus=1 --rm --net=host -v ${PWD}/model_repository:/models nvcr.io/nvidia/tritonserver:24.10-py3 tritonserver --model-repository=/models

# Step 3: Sending an Inference Request
# In a separate console, launch the image_client example from the NGC Triton SDK container
docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:24.09-py3-sdk
docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:24.10-py3-sdk
/workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION /workspace/images/mug.jpg

# Inference should return the following
Expand Down
2 changes: 1 addition & 1 deletion TRITON_VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
2.51.0dev
2.52.0dev
12 changes: 6 additions & 6 deletions build.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,14 +70,14 @@
# incorrectly load the other version of the openvino libraries.
#
TRITON_VERSION_MAP = {
"2.51.0dev": (
"24.10dev", # triton container
"24.09", # upstream container
"2.52.0dev": (
"24.11dev", # triton container
"24.10", # upstream container
"1.19.2", # ORT
"2024.0.0", # ORT OpenVINO
"2024.0.0", # Standalone OpenVINO
"2024.4.0", # ORT OpenVINO
"2024.4.0", # Standalone OpenVINO
"3.2.6", # DCGM version
"0.5.3.post1", # vLLM version
"0.5.5", # vLLM version
)
}

Expand Down
2 changes: 1 addition & 1 deletion deploy/aws/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
replicaCount: 1

image:
imageName: nvcr.io/nvidia/tritonserver:24.09-py3
imageName: nvcr.io/nvidia/tritonserver:24.10-py3
pullPolicy: IfNotPresent
modelRepositoryPath: s3://triton-inference-server-repository/model_repository
numGpus: 1
Expand Down
2 changes: 1 addition & 1 deletion deploy/fleetcommand/Chart.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@

apiVersion: v1
# appVersion is the Triton version; update when changing release
appVersion: "2.50.0"
appVersion: "2.51.0"
description: Triton Inference Server (Fleet Command)
name: triton-inference-server
# version is the Chart version; update when changing anything in the chart
Expand Down
6 changes: 3 additions & 3 deletions deploy/fleetcommand/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
replicaCount: 1

image:
imageName: nvcr.io/nvidia/tritonserver:24.09-py3
imageName: nvcr.io/nvidia/tritonserver:24.10-py3
pullPolicy: IfNotPresent
numGpus: 1
serverCommand: tritonserver
Expand All @@ -47,13 +47,13 @@ image:
#
# To set model control mode, uncomment and configure below
# TODO: Fix the following url, it is invalid
# See https://github.com/triton-inference-server/server/blob/r24.09/docs/model_management.md
# See https://github.com/triton-inference-server/server/blob/r24.10/docs/model_management.md
# for more details
#- --model-control-mode=explicit|poll|none
#
# Additional server args
#
# see https://github.com/triton-inference-server/server/blob/r24.09/README.md
# see https://github.com/triton-inference-server/server/blob/r24.10/README.md
# for more details

service:
Expand Down
2 changes: 1 addition & 1 deletion deploy/gcp/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
replicaCount: 1

image:
imageName: nvcr.io/nvidia/tritonserver:24.09-py3
imageName: nvcr.io/nvidia/tritonserver:24.10-py3
pullPolicy: IfNotPresent
modelRepositoryPath: gs://triton-inference-server-repository/model_repository
numGpus: 1
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ metadata:
namespace: default
spec:
containers:
- image: nvcr.io/nvidia/tritonserver:24.09-py3-sdk
- image: nvcr.io/nvidia/tritonserver:24.10-py3-sdk
imagePullPolicy: Always
name: nv-triton-client
securityContext:
Expand Down
6 changes: 3 additions & 3 deletions deploy/gke-marketplace-app/server-deployer/build_and_push.sh
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,9 @@

export REGISTRY=gcr.io/$(gcloud config get-value project | tr ':' '/')
export APP_NAME=tritonserver
export MAJOR_VERSION=2.50
export MINOR_VERSION=2.50.0
export NGC_VERSION=24.09-py3
export MAJOR_VERSION=2.51
export MINOR_VERSION=2.51.0
export NGC_VERSION=24.10-py3

docker pull nvcr.io/nvidia/$APP_NAME:$NGC_VERSION

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

apiVersion: v1
appVersion: "2.50"
appVersion: "2.51"
description: Triton Inference Server
name: triton-inference-server
version: 2.50.0
version: 2.51.0
Original file line number Diff line number Diff line change
Expand Up @@ -31,14 +31,14 @@ maxReplicaCount: 3
tritonProtocol: HTTP
# HPA GPU utilization autoscaling target
HPATargetAverageValue: 85
modelRepositoryPath: gs://triton_sample_models/24.09
publishedVersion: '2.50.0'
modelRepositoryPath: gs://triton_sample_models/24.10
publishedVersion: '2.51.0'
gcpMarketplace: true

image:
registry: gcr.io
repository: nvidia-ngc-public/tritonserver
tag: 24.09-py3
tag: 24.10-py3
pullPolicy: IfNotPresent
# modify the model repository here to match your GCP storage bucket
numGpus: 1
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
x-google-marketplace:
schemaVersion: v2
applicationApiVersion: v1beta1
publishedVersion: '2.50.0'
publishedVersion: '2.51.0'
publishedVersionMetadata:
releaseNote: >-
Initial release.
Expand Down
4 changes: 2 additions & 2 deletions deploy/gke-marketplace-app/server-deployer/schema.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
x-google-marketplace:
schemaVersion: v2
applicationApiVersion: v1beta1
publishedVersion: '2.50.0'
publishedVersion: '2.51.0'
publishedVersionMetadata:
releaseNote: >-
Initial release.
Expand Down Expand Up @@ -89,7 +89,7 @@ properties:
modelRepositoryPath:
type: string
title: Bucket where models are stored. Please make sure the user/service account to create the GKE app has permission to this GCS bucket. Read Triton documentation on configs and formatting details, supporting TensorRT, TensorFlow, Pytorch, Onnx ... etc.
default: gs://triton_sample_models/24.09
default: gs://triton_sample_models/24.10
image.ldPreloadPath:
type: string
title: Leave this empty by default. Triton allows users to create custom layers for backend such as TensorRT plugin or Tensorflow custom ops, the compiled shared library must be provided via LD_PRELOAD environment variable.
Expand Down
6 changes: 3 additions & 3 deletions deploy/gke-marketplace-app/trt-engine/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
```
docker run --gpus all -it --network host \
--shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \
-v ~:/scripts nvcr.io/nvidia/tensorrt:24.09-py3
-v ~:/scripts nvcr.io/nvidia/tensorrt:24.10-py3

pip install onnx six torch tf2onnx tensorflow

Expand All @@ -57,7 +57,7 @@ mkdir -p engines

python3 builder.py -m models/fine-tuned/bert_tf_ckpt_large_qa_squad2_amp_128_v19.03.1/model.ckpt -o engines/bert_large_int8_bs1_s128.engine -b 1 -s 128 -c models/fine-tuned/bert_tf_ckpt_large_qa_squad2_amp_128_v19.03.1/ -v models/fine-tuned/bert_tf_ckpt_large_qa_squad2_amp_128_v19.03.1/vocab.txt --int8 --fp16 --strict --calib-num 1 -iln -imh

gsutil cp bert_large_int8_bs1_s128.engine gs://triton_sample_models/24.09/bert/1/model.plan
gsutil cp bert_large_int8_bs1_s128.engine gs://triton_sample_models/24.10/bert/1/model.plan
```

For each Triton upgrade, container version used to generate the model, and the model path in GCS `gs://triton_sample_models/24.09/` should be updated accordingly with the correct version.
For each Triton upgrade, container version used to generate the model, and the model path in GCS `gs://triton_sample_models/24.10/` should be updated accordingly with the correct version.
2 changes: 1 addition & 1 deletion deploy/k8s-onprem/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ tags:
loadBalancing: true

image:
imageName: nvcr.io/nvidia/tritonserver:24.09-py3
imageName: nvcr.io/nvidia/tritonserver:24.10-py3
pullPolicy: IfNotPresent
modelRepositoryServer: < Replace with the IP Address of your file server >
modelRepositoryPath: /srv/models
Expand Down
2 changes: 1 addition & 1 deletion deploy/oci/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
replicaCount: 1

image:
imageName: nvcr.io/nvidia/tritonserver:24.09-py3
imageName: nvcr.io/nvidia/tritonserver:24.10-py3
pullPolicy: IfNotPresent
modelRepositoryPath: s3://https://<OCI_NAMESPACE>.compat.objectstorage.<OCI_REGION>.oraclecloud.com:443/triton-inference-server-repository
numGpus: 1
Expand Down
6 changes: 3 additions & 3 deletions docs/customization_guide/build.md
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ $ ./build.py ... --repo-tag=common:<container tag> --repo-tag=core:<container ta

If you are building on a release branch then `<container tag>` will
default to the branch name. For example, if you are building on the
r24.09 branch, `<container tag>` will default to r24.09. If you are
r24.10 branch, `<container tag>` will default to r24.10. If you are
building on any other branch (including the *main* branch) then
`<container tag>` will default to "main". Therefore, you typically do
not need to provide `<container tag>` at all (nor the preceding
Expand Down Expand Up @@ -334,8 +334,8 @@ python build.py --cmake-dir=<path/to/repo>/build --build-dir=/tmp/citritonbuild
If you are building on *main* branch then `<container tag>` will
default to "main". If you are building on a release branch then
`<container tag>` will default to the branch name. For example, if you
are building on the r24.09 branch, `<container tag>` will default to
r24.09. Therefore, you typically do not need to provide `<container
are building on the r24.10 branch, `<container tag>` will default to
r24.10. Therefore, you typically do not need to provide `<container
tag>` at all (nor the preceding colon). You can use a different
`<container tag>` for a component to instead use the corresponding
branch/tag in the build. For example, if you have a branch called
Expand Down
18 changes: 9 additions & 9 deletions docs/customization_guide/compose.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,8 +46,8 @@ The `compose.py` script can be found in the
Simply clone the repository and run `compose.py` to create a custom container.
Note: Created container version will depend on the branch that was cloned.
For example branch
[r24.09](https://github.com/triton-inference-server/server/tree/r24.09)
should be used to create a image based on the NGC 24.09 Triton release.
[r24.10](https://github.com/triton-inference-server/server/tree/r24.10)
should be used to create a image based on the NGC 24.10 Triton release.

`compose.py` provides `--backend`, `--repoagent` options that allow you to
specify which backends and repository agents to include in the custom image.
Expand Down Expand Up @@ -79,20 +79,20 @@ For example, running
```
python3 compose.py --backend pytorch --repoagent checksum
```
on branch [r24.09](https://github.com/triton-inference-server/server/tree/r24.09) pulls:
- `min` container `nvcr.io/nvidia/tritonserver:24.09-py3-min`
- `full` container `nvcr.io/nvidia/tritonserver:24.09-py3`
on branch [r24.10](https://github.com/triton-inference-server/server/tree/r24.10) pulls:
- `min` container `nvcr.io/nvidia/tritonserver:24.10-py3-min`
- `full` container `nvcr.io/nvidia/tritonserver:24.10-py3`

Alternatively, users can specify the version of Triton container to pull from
any branch by either:
1. Adding flag `--container-version <container version>` to branch
```
python3 compose.py --backend pytorch --repoagent checksum --container-version 24.09
python3 compose.py --backend pytorch --repoagent checksum --container-version 24.10
```
2. Specifying `--image min,<min container image name> --image full,<full container image name>`.
The user is responsible for specifying compatible `min` and `full` containers.
```
python3 compose.py --backend pytorch --repoagent checksum --image min,nvcr.io/nvidia/tritonserver:24.09-py3-min --image full,nvcr.io/nvidia/tritonserver:24.09-py3
python3 compose.py --backend pytorch --repoagent checksum --image min,nvcr.io/nvidia/tritonserver:24.10-py3-min --image full,nvcr.io/nvidia/tritonserver:24.10-py3
```
Method 1 and 2 will result in the same composed container. Furthermore,
`--image` flag overrides the `--container-version` flag when both are specified.
Expand All @@ -103,8 +103,8 @@ Note:
2. vLLM and TensorRT-LLM backends are currently not supported backends for
`compose.py`. If you want to build additional backends on top of these backends,
it would be better to [build it yourself](#build-it-yourself) by using
`nvcr.io/nvidia/tritonserver:24.09-vllm-python-py3` or
`nvcr.io/nvidia/tritonserver:24.09-trtllm-python-py3` as a `min` container.
`nvcr.io/nvidia/tritonserver:24.10-vllm-python-py3` or
`nvcr.io/nvidia/tritonserver:24.10-trtllm-python-py3` as a `min` container.


### CPU-only container composition
Expand Down
2 changes: 1 addition & 1 deletion docs/customization_guide/test.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ $ ./gen_qa_custom_ops
```

This will create multiple model repositories in /tmp/\<version\>/qa_*
(for example /tmp/24.09/qa_model_repository). The TensorRT models
(for example /tmp/24.10/qa_model_repository). The TensorRT models
will be created for the GPU on the system that CUDA considers device 0
(zero). If you have multiple GPUs on your system see the documentation
in the scripts for how to target a specific GPU.
Expand Down
4 changes: 2 additions & 2 deletions docs/generate_docs.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,11 @@
"""
TODO: Needs to handle cross-branch linkage.

For example, server/docs/user_guide/architecture.md on branch 24.09 links to
For example, server/docs/user_guide/architecture.md on branch 24.10 links to
server/docs/user_guide/model_analyzer.md on main branch. In this case, the
hyperlink of model_analyzer.md should be a URL instead of relative path.

Another example can be server/docs/user_guide/model_analyzer.md on branch 24.09
Another example can be server/docs/user_guide/model_analyzer.md on branch 24.10
links to a file in server repo with relative path. Currently all URLs are
hardcoded to main branch. We need to make sure that the URL actually points to the
correct branch. We also need to handle cases like deprecated or removed files from
Expand Down
6 changes: 3 additions & 3 deletions docs/user_guide/custom_operations.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ simple way to ensure you are using the correct version of TensorRT is
to use the [NGC TensorRT
container](https://ngc.nvidia.com/catalog/containers/nvidia:tensorrt)
corresponding to the Triton container. For example, if you are using
the 24.09 version of Triton, use the 24.09 version of the TensorRT
the 24.10 version of Triton, use the 24.10 version of the TensorRT
container.

## TensorFlow
Expand Down Expand Up @@ -123,7 +123,7 @@ simple way to ensure you are using the correct version of TensorFlow
is to use the [NGC TensorFlow
container](https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow)
corresponding to the Triton container. For example, if you are using
the 24.09 version of Triton, use the 24.09 version of the TensorFlow
the 24.10 version of Triton, use the 24.10 version of the TensorFlow
container.

## PyTorch
Expand Down Expand Up @@ -167,7 +167,7 @@ simple way to ensure you are using the correct version of PyTorch is
to use the [NGC PyTorch
container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch)
corresponding to the Triton container. For example, if you are using
the 24.09 version of Triton, use the 24.09 version of the PyTorch
the 24.10 version of Triton, use the 24.10 version of the PyTorch
container.

## ONNX
Expand Down
4 changes: 2 additions & 2 deletions docs/user_guide/performance_tuning.md
Original file line number Diff line number Diff line change
Expand Up @@ -235,7 +235,7 @@ with a `tritonserver` binary.

```bash
# Start server container
docker run -ti --rm --gpus=all --network=host -v $PWD:/mnt --name triton-server nvcr.io/nvidia/tritonserver:24.09-py3
docker run -ti --rm --gpus=all --network=host -v $PWD:/mnt --name triton-server nvcr.io/nvidia/tritonserver:24.10-py3

# Start serving your models
tritonserver --model-repository=/mnt/models
Expand Down Expand Up @@ -284,7 +284,7 @@ by setting the `-u` flag, such as `perf_analyzer -m densenet_onnx -u

```bash
# Start the SDK container interactively
docker run -ti --rm --gpus=all --network=host -v $PWD:/mnt --name triton-client nvcr.io/nvidia/tritonserver:24.09-py3-sdk
docker run -ti --rm --gpus=all --network=host -v $PWD:/mnt --name triton-client nvcr.io/nvidia/tritonserver:24.10-py3-sdk

# Benchmark model being served from step 3
perf_analyzer -m densenet_onnx --concurrency-range 1:4
Expand Down
2 changes: 1 addition & 1 deletion qa/L0_trt_dla/dla_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ def test_resnet50(self):

# Validate the results by comparing with precomputed values.
# VULTURE class corresponds with index 23
EXPECTED_CLASS_INDEX = 23
EXPECTED_CLASS_INDEX = 418
for i in range(batch_size):
self.assertEqual(output_data[i][0][0], EXPECTED_CLASS_INDEX)

Expand Down
2 changes: 1 addition & 1 deletion qa/common/gen_jetson_trt_models
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
# Make all generated files accessible outside of container
umask 0000
# Set the version of the models
TRITON_VERSION=${TRITON_VERSION:=24.09}
TRITON_VERSION=${TRITON_VERSION:=24.10}
# Set the CUDA device to use
CUDA_DEVICE=${RUNNER_ID:=0}
# Set TensorRT image
Expand Down
2 changes: 1 addition & 1 deletion qa/common/gen_qa_custom_ops
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
##
############################################################################

TRITON_VERSION=${TRITON_VERSION:=24.09}
TRITON_VERSION=${TRITON_VERSION:=24.10}
NVIDIA_UPSTREAM_VERSION=${NVIDIA_UPSTREAM_VERSION:=$TRITON_VERSION}
TENSORFLOW_IMAGE=${TENSORFLOW_IMAGE:=nvcr.io/nvidia/tensorflow:$NVIDIA_UPSTREAM_VERSION-tf2-py3}
PYTORCH_IMAGE=${PYTORCH_IMAGE:=nvcr.io/nvidia/pytorch:$NVIDIA_UPSTREAM_VERSION-py3}
Expand Down
Loading
Loading